
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1959

A calculation of the elastic constants of yttrium and
the rare earth metals
Benjamin Tobias Bernstein
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Condensed Matter Physics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bernstein, Benjamin Tobias, "A calculation of the elastic constants of yttrium and the rare earth metals " (1959). Retrospective Theses
and Dissertations. 2572.
https://lib.dr.iastate.edu/rtd/2572

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/2572?utm_source=lib.dr.iastate.edu%2Frtd%2F2572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

A CALCULATION OF THE ELASTIC CONSTANTS OF 

YTTRIUM AND THE RARE EARTH METALS 

by 

Benjamin Tobias Bernstein 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject : Physical Chemistry 

Approved: 

kp. Uharge or Major work 

Dean of Graduate College 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

1959 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

I. INTRODUCTION 1 

II. ANALYSIS OF ELASTIC STRESSES AND STRAINS 6 

A. The Stress Tensor 6 
B. The Strain Tensor 7 
C. The Definition and Meaning of the Elastic 

Constants 9 

III. A MODIFIED CELLULAR CALCULATION FOR SCANDIUM, 
YTTRIUM AND THE RARE EARTH METALS 15 

A. General Considerations 15 
B. The Modified Cellular Method of Raim.es 19 
C. Procedure and Results for Scandium, Yttrium 

and the Rare Earth Metals 25 

IV. CALCULATION OF THE ELASTIC SHEAR CONSTANTS 43 

A. General Considerations 1+3 
B. The Elastic Shear Strain Energy 45 
C. The Electrostatic Energy of the Lattice 51 
D. The Non-Coulomb Repulsive Interactions of the 

Ion-Cores 54 
E. The Fermi Energy 55 
F. Results 73 

V. DISCUSSION 87 

VI. LITERATURE CITED 93 

VII. ACKNOWLEDGMENTS 96 

VIII. APPENDIX 97 

A. First and Second Derivatives of the Direct 
and Reciprocal Lattice Vectors with Respect 
to the Strain Parameters^/ , #] , and £ 97 

B. Full Zone Contributions to the Elastic 
Shear Constant C 99 

C. Full Zone Contributions to the Elastic 
Shear Constant C1 103 

D. Relations for the Determination of the Change 
in Electrostatic, Non-Coulomb Repulsive, ana 
Full Zone Energies with Strain 116 



www.manaraa.com

1 

I. INTRODUCTION 

The rare earth metals are a highly reactive, closely 

related group of elements (atomic numbers 57-71)• Their 

close similarity, with the exceptions of cerium, europium, 

and ytterbium is accounted for by their basic electronic 

structures. All have the xenon atom core and three outer 

electrons in the ^d and 6s atomic levels. They differ 

only in the number of electrons in the f level. Although not 

actually members of the series, scandium and yttrium are 

generally included in any treatment of the rare earths because 

of their close chemical and physical similarities. Scandium 

and yttrium exhibit trivaient behavior with three valence 

electrons in the Jd and Ij^s, and i&d and £s. atomic levels, 

respectively. Experimental evidence (1) indicates that the 

kf electrons sire part of the atomic core for all the rare 

earth metals. Cerium has been postulated (2) to form 

quadrivalent atomic cores due to the promotion of the single 

Uf electron to the valence level. Experimental evidence (1) 

indicates that europium and ytterbium tend to half-fill and 

fill, respectively, the ^f level at the expense of the £d and 

6s atomic levels, forming divalent atomic cores. 

The structure characteristics of the rare earth metals, 

scandium, and yttrium, compiled by Spedding et. al. (3), are 

given in Table 1. Scandium, yttrium, and most of the rare 

earth metals crystallize in the hexagonal close-packed 
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structure at room temperature. Lanthanum, praesodymium, and 

neodymium crystallize with a structure closely related to 

hexagonal close-packed. In this structure the basal planes 

are layered ABACABAC instead of the usual ABABABAB. Samarium 

crystallizes with a hexagonal structure which has a peculiar 

layering of close-packed planes. Cerium and ytterbium 

crystallize in the face-centered cubic structure. Europium 

crystallizes in the body-centered cubic structure. It is 

readily seen from Table 1 that cerium, europium, and ytterbium 

deviate from the other rare earth metals in the trend of 

decreasing mole atomic volume with increasing atomic number. 

The polycrystalline elastic moduli of yttrium and eleven 

of the rare earth metals have been measured by Smith et_. al. 

(4). The compressibility and shear modulus show an approx­

imately linear trend with increasing atomic number for the 

hexagonal rare earth metals. The results for the 

compressibility and shear modulus of the metals investigated 

(4) are given in Table 2. Investigation of Table 2 reveals 

that cerium and ytterbium deviate drastically from the other 

rare earth metals. The compressibility is the reciprocal of 

the bulk modulus and is a measure of the interatomic forces 

resisting volume changes at zero shear. The shear modulus is 

a measure of the interatomic forces resisting deformation of 

shape at constant volume. The compressibility and shear 

modulus thus give complementary information about the 

interatomic forces in solids. 
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Table 1 

Structure characteristics of the rare earth metals, 
scandium, and yttrium 

Element 
Atomic 
number 

Crystal 
structure 

Lattice0constants 
(A) 

a c c/a 

Mole at. 
vol. 
(cm3) 

La 57 hex 3.770 12.159 1.613® 22.544 

Ce 58 f. c. c. 5.1612 — — — — 20.705 

Pr 59 hex 3.6725 11.8354 1.612* 20.818 

Nd 60 hex 3.6579 11.7992 1.613* 20.590 

Sm 62 hex 3.621 26.25 1.611% 19.950* 

Eu 63 b. c. c. 4.606 — — — — 29.423 

Gd 64 h.c.p. 3.6360 5.7826 1.590 19.941 

Tb 65 h.c.p. 3.6010 5.6936 1.581 19.258 

Dy 66 h.c.p. 3.5903 5.6475 1.573 18.989 

Ho 67 h.c.p. 3.5773 5.6158 1.570 18.745 

Er 68 h.c.p. 3.5588 5.5874 1.570 18.458 

Tm 69 h.c.p. 3.5375 5.5546 1.570 18.131 

Yb 70 f. c . c. 5.4862 — - — — 24.867 

Lu 71 h.c.p. 3.5031 2.2509 1.585 17.768 

Se 21 h.c.p. 3.3090 5.2733 1.594 15.061 

Y 39 h.c.p. 3.6474 5.7306 1.571 19.886 

^Calculations based on h.c.p. unit cell. 
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Table 2 

Compressibility and shear modulus of eleven of the 
rare earth metals 

Element 
Atomic 
number 

Compressibility 
zx 106 sq oiru 

per kg ' 

Shear modulus 
zx 10-11 dynes\ 
v per sq cm 

La 57 3.24 1.49 

Ce 58 4.95 1.20 

Pr 59 3.28 1.35 

Nd 60 3.02 1.42 

Sm 62 2.56 1.26 

Gd 64 2.52 2.23 

Tb 65 2.42 2.28 

Dy 66 2.39 2.54 

Ho 67 2.14 2.67 

Sr 68 2.11 2.96 

Yb 70 7.12 0.70 

The purpose of this investigation was to examine the 

observed variation with atomic number of the atomic radius 

and compressibility of the hexagonal rare earth metals and 

the deviation of cerium, europium and ytterbium from the above 

trends. Recently Smith and G.jevre (5) have measured the 

single crystal elastic constants of hexagonal close-packed 

yttrium in the temperature range 4«2°K to 400°K. A second 
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purpose of this investigation was to interpret the results 

for yttrium on the basis of a quantum mechanical theory of 

elasticity proposed by Fuchs (6) for the monovalent metals 

and developed by Leigh (7) and Reitz and Smith (8) for 

polyvalent metals. In addition an attempt was made to explain 

the observed variation with atomic number of the shear moduli 

of the hexagonal rare earth metals. 

The application of the above theories of elasticity 

depends upon the assumption of nearly-free electron behavior 

of the valence electrons. A completely rigorous treatment of 

cohesion in the rare earths and related elements is not yet 

possible. In order to test the assumption of nearly-free 

electron behavior for the valence electrons of scandium, 

yttrium and the rare earth metals the cellular method as 

modified by Raimes (9) was extended to these elements. 

Raimes1 method depends upon the assumption of equivalent 

valence electrons with nearly-free electron behavior. The 

term equivalent is taken to mean that the valence electrons 

share the same ground state wave functions and differ only 

A 

in their wave-number vector, k. 
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II. ANALYSIS OF ELASTIC STRESSES AND STRAINS 

A. The Stress Tensor 

A body which is acted on by external forces is said to be 

in a state of stress. If one considers a volume element 

situated within a stressed body, one may recognize two kinds 

of forces acting upon it. First, there are body forces, such 

as gravity, which act throughout the body and whose 

magnitudes are proportional to the volume of the element. 

Second, there are forces exerted on the surface of the element 

by the material surrounding it. These forces are 

proportional to the area of the surface of the element, and 

the force per unit area is called the stress. Stress may be 

represented by a second-rank tensor. The components Tjj of 

the stress tensor are defined as 

Tt1 = lira (i,j = 1,2,3), (1) 
J AA, 

At A.-» 0 J 

where the A F^ are components of the force acting on the 

surface element AA^. A stress is said to be homogeneous if 

the forces acting on the surface of an element of fixed shape 

and orientation are independent of the position of the 

element in the body. The discussion in this work will be 

limited to states in which (a) the stress is homogeneous 

throughout the body, (b) all parts of the body are in statical 
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equilibrium, and (c) there are no body-torques, 

The stress tensor is defined as : 

(?lj) = 

Tu T12 T13 

T21 T22 T23 

T31 T32 33 
( 2 )  

The first subscript denotes the direction of the force and the 

second the normal to the plane to which the force is applied. 

Tu, -^22» &nd. T33 are the normal components of the stress 

tensor and are tensions when positive. The non-diagonal 

components are the shear stresses. The condition that the 

body be in statical equilibrium and body-torques are absent 

imposes the condition for equilibrium that 

T ij = T ji- (3) 

The total number of independent stress components in equation 

2 is reduced from nine to six by equation 3* The symmetrical 

stress tensor formed is given by: 

T11 T12 T13 
( T i J >  =  T12 T22 T23 

T13 T23 T33 

B. The 

(4) 

The variation of the displacement u^ with position x^ in 

a body, is used to define nine tensor components 
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tj 
9ui 

9xj 
(i,d = 1,2,3). ( 2 )  

The make up a second-rank tensor 

(Eij) = 

e  11 6 12 613 

£ 21 £22 623 

£ 31 632 é 33 
( 6 )  

which may be separated into symmetrical and antisymmetrical 

parts by the relation, 

(£ ij) - (eij) + (Luij)e (7) 

The strain tensor (e^j) is defined as the symmetrical part of 

( £ jj ). The antisymmetrical part of (6 1 ̂ ), represented by ij 

(OOij), is known as the rotation. The components of (©ij) and 

( ) are defined respectively by the relations 

eij = fji' 

and 

Wij = è( £ ij - £ ji). (8 )  

If the strain is homogeneous and rotations are excluded, 

the strain tensor is defined as 



www.manaraa.com

9 

(eij) = 

ell 612 613 

612 ®22 ®23 

®13 *23 e33 

c 11 ^ 12 
+ £2i) i( £13 + £31) 

i( é 12 + ^ 21 ̂ £ 22 i( £ 23 + €32* 

*( *13 + 631) M £23 + e32) € 33 

(9) 

The ej_j- are the normal (tensile) strains and are positive when 

the medium is extended. The eare the shear components. 

One may interpret the shear components, 

®ij = *( €lj + €Jl'» 

as composed of two simple strains. In one of the strains, 

planes of the material normal to the x^ axis slide in the Xj 

direction; in the other, planes normal to the Xj axis slide in 

the X£ direction. It should be noted that while the strain 

tensor is symmetrical and e^ j = e^ it is not necessarily true 

that £ ij = £j j_. 

C. The Definition and Meaning of the Elastic Constants 

If a general homogeneous stress Tjj is applied to a 

crystal the resulting homogeneous strain e^j is such that each 

component is linearly related to all the components of the 
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stress for small displacements. This is a statement of 

Hooke's Law which may be written in the generalized tensor 

notation as, 

6ij ™ SijklTkle *'10* 

The constants of proportionality (S^j^) are called the 

elastic compliance constants. Alternatively, equation 10 may 

be written in the form: 

Tij = °ijklekle 

The constants of proportionality (C^^) are now called the 

elastic constants, stiffness constants, or moduli of 

elasticity. It may be shown (10) that the exclusion of 

rotations and body-torques from consideration lead to 

constraints between the 81 components of the elastic constants 

such that 

°ijkl = Cijlk, 

and 

cijkl - cjikle (12) 

These constraints reduce the total number of independent 

constants from 81 to 36. The Cijkl form a fourth-rank tensor. 

It is customary to convert the tensor notation, used in 

the previous sections, to matrix notation. This is done in 

order to reduce the number of subscripts to enable ease of 
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handling in a particular problem. Both the stress components 

and the strain components are written as before, but with 

single subscripts running from 1 to 6: 

T11 T12 T13 T1 T6 T5 

T12 T22 t23 *- T6 T2 Tu 

T13 T23 T33 t5 T3 

®11 612 613 
el 

CM H
 

<D 

e22 *23 ^ e2 i®4 

613 e23 e33 *e4 e3 
* (13) 

The 36 elastic constants may be represented by the matrix: 

(cij) = 

C11 c12 °13 C14 ci5 °16 

C21 °22 °23 °24 ^25 c26 

C31 C32 C33 °34 °35 °36 

V °4 2 °43 °U4 % °46 
c5i ^2 c53 °54 °26 

c6l C62 ^63 °64 *65 °66 (14) 

The First Law of Thermodynamics for a volume under stress 

may be written in the form 

dU = dQ + dW, (15) 

where dU, dQ, and dW are respectively the change in internal 

energy, the heat change accompanying a displacement, and the 
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work done on the system during the displacement. If the 

deformation process is adiabatic, then dQ = 0 and the work 

done by the stress components T^ causing a strain de^ is 

dW = Tjde^. (16) 

The increase in internal energy may now be written in the 

form: 

dU = dVJ = T^de^. (17) 

If Hooke's Law is obeyed then 

dW = c^jejde^, (18) 

from which one obtains the relation: 

( 3 W/ ) = c^j-e j. (19) 

Equation 19 may be also derived if the deformation process is 

isothermal and reversible (10). Differentiating equation 19 

with respect to ej yields : 

/^tej ( «5 W/ <9e^ ) = c^j. (20) 

Since U is a function only of the state of the system, 

specified by the strain components, dW is a perfect differ­

ential for an adiabatic process. The order of differentiation 

in equation 20 is thus immaterial and 
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!ij = c jle (21) 

The symmetry of the c jj shown by equation 21 reduces the 

number of independent elastic constants from 36 to 21. 

Integrating equation 18 and using equation 21 the work 

necessary to produce a strain e^, called the elastic strain 

energy W, is found to be: 

W = + i 
o + 2cijeiej ( 2 2 )  

per unit volume of the crystal. The number of independent 

elastic constants may be further reduced by the symmetry 

operations of the respective crystal classes (10,11). For 

hexagonal crystals, with which this work will be concerned, 

there are only five independent elastic constants 

represented by the matrix: 

(°ij) = 

C11 °12 °13 
0 0 0 

c12 C11 C13 
0 0 0 

c13 C13 °33 0 0 0 

0 0 0 c44 
0 0 

0 0 0 0 c44 
0 

0 0 0 0 0 2 ̂ cll"c12 ̂ 
(2U)  

The most fundamental significance of the elastic 

constants, from an atomistic viewpoint, is their appearance 

as the second derivatives of the elastic strain energy. The 
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elastic strain energy of equation 22 is part of the complete 

thermodynamic potential of a crystal and hence directly 

related to the nature of the bonding in the crystal. Analysis 

of the elastic constants of metals in the light of current 

theory provides information concerning the interatomic 

forces in metals. 
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III. A MODIFIED CELLULAR CALCULATION FOR SCANDIUM, 

YTTRIUM AND THE RARE EARTH METALS 

A. General Considerations 

vJigner and Seitz (12) originated the cellular method for 

the calculation of the cohesive energies of metals. In this 

method a metal lattice is partitioned into a set of space­

filling polyhedra which are centered about each of the 

metallic nuclei. The geometrical shape of these polyhedra, 

called cellular polyhedra, is dependent upon the symmetry of 

the crystal class to which the metal belongs. It is assumed 

that all electrons within a given cellular polyhedron may be 

divided into (a) inner electrons which are assumed to be 

rigidly attached to the nucleus and are not appreciably 

affected by changes in interatomic distances, and (b) outer 

electrons, chiefly responsible for the cohesion of the metal, 

which are affected by changes in interatomic distances. The 

inner electrons and the nucleus constitute an ion-core. The 

outer electrons are known as valence or conduction electrons. 

Each of the cellular polyhedra are electrically neutral. For 

simplicity of calculation Wigner and Seitz (12) have 

suggested that each cellular polyhedron be approximated by an 

atomic sphere of equal volume. 

For a system containing N electrons, the many electron 

wave function may be described as 
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where x1# x2>. • •, symbolize position vectors for the N 

electrons which also include the spin variables. The first 

and second order density matrices are defined by Brooks (13), 

using a notation due to Lowdin (II}.), as : 

p (4^ = h fori 2d*2....dS„, (25) 

p I ' ' ' • ' (26) 

where the integrations are taken over all the electronic 

coordinates except those which occur explicitly in the 

argument of the f1 1 s and summation over spin variables is 

understood. The joint density matrix is defined as : 

r^llV = X̂1,X2'* * * ,XN X̂2* * 

( 2 ? )  

in which the wave functions in the integrand differ in the 

position of electron 1. 

If the wave function is written as an antisymmetrized 

sum of products given by 

_ N 
• • • ,Xjj) = k̂l̂ xl ̂k2̂ x2 ̂ » (28) 

k=l 

then equation 27 becomes 
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N r 
P (^'1^)= ih Uk(5il)4(S1)dj?2 dXjj, (29) 

k-1 j 

and equation 25 becomes 

N ç 
r (si> = 2, oc) 

k=l / 

The second order density matrix, equation 26, now has the 

form 

P (x1#5;2) = ̂  T(x1)P (x2) - \ j P (x^| x2) | 2. (31) 

The total energy of a metal at the absolute zero of 

temperature may be written in the cellular approximation as 

N 

E = " H, v%(2i)ati 
k=l ) 

N 

+ 
2 \ 
k=l 

+ 2Çr1 <&g) dCidt2 

r12 

+ i * 2^6k- (32) 

g,h g,k 

The first term in equation 32 is the kinetic energy of the 

valence electrons. The second term is the sum of (a) the 

potential energy due to the interaction of an ion-core with 
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the negative charge inside an atomic polyhedron, and (b) 

the self-potential energy of the valence electron charge 

distribution within an atomic polyhedron. The third term 

involves the joint probability density of equation 29 and 

gives rise to what are known as the exchange and correlation 

energies. The integrations are taken over the volume of the 

atomic sphere representing the cellular polyhedron. The 

quantity r^g denotes the distance between electrons 1 and 2. 

The fourth term in equation 32 is the non-Coulomb interaction 

energy of the rigid ion-cores due to the overlapping of the 

core shell electrons between cells g and h. The fifth and 

final term is the electrostatic potential energy due to the 

non-spherically symmetrical part of the electronic charge 

distribution and corresponds to the sum of (a) the inter­

action of bhe non-spherically symmetric part of the charge 

distribution in cell h with the potential produced by the net 

ion-core charge in cell g, and (b) the interaction of the 

total charge distribution in cell g with the potential 

produced by the non-spherically symmetric part of the charge 

distribution in cell h. The reader is referred to the 

articles by Brooks (13) and Reitz (15) for detailed 

treatments of how the various terms in equation 32 enter into 

the expression for the total energy of a metal. A 

comprehensive discussion of the exchange and correlation 

energies is given in an article by Pines (16). The zero 

point energy, core polarization effects, and multipole inter-
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actions are neglected in equation 32. The one-electron wave 

functions may be represented in the form developed by Bloch 

(17) as 

= 0-̂  exp i£ • r, (33) 

where r is a position vector, tc is a wave -number vector and 

has the translational periodicity of the lattice. 

The Bohr system of units was used throughout the course 

of this investigation unless otherwise indicated. For this 

system the unit of energy is the rydberg (lRy = 13•60 eV), and 

the unit of length is the radius (0.^292 x 10"® cm) of the 

first Bohr orbit in a hydrogen atom of infinite nuclear mass. 

B. The Modified Cellular Method of Raimes 

The Schrodinger wave equation for an electron in a 

metal, neglecting the last three terms in equation 32, may be 

written as 

+ (6j " V(r)^0j = 0 (34) 

where 0j is a Bloch wave of equation 33» Calculations of 0^ 

in magnesium (18) indicate that in divalent as well as 

monovalent metals 0^ is very flat near to the boundary of the 

atomic sphere representing the cellular polyhedron and 

approximately constant over much of the volume. Thus equation 
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33 may be written as 

0j = exp ik • r, (35) 

with the assumption that 0^ is equal to a constant value 0Q. 

The function 0Q is the wave function for the state of lowest 

energy. Equation 34 may now be written in terms of 0O as 

y20o + 2iêj • ( V0O) + (& j - kj - V)0O = 0. (36) 

Since 0O is assumed constant, 0O vanishes and £ . is given 

by 

=  B °  +  £ k 2 -  ( 3 7 )  

Eq corresponds to the sum of the first two terras in equation 

32 and consists of the kinetic energy of the electrons in the 

lowest state, the potential energy due to the interaction of 

an electron with the ion-core field in an atomic polyhedron, 

and the seIf-potential energy of the valence electron charge 

distribution within an atomic polyhedron. The mean value of 

j^(h^/2m) k^J is called the mean Fermi energy, since it 
corresponds to the mean additional kinetic energy that the 

valence electrons would possess in the solid as compared to 

the free atom and is due to a Fermi-Dirac distribution. 

Calculation of 0Q by Raimes (18) for magnesium, using a 

self-consistent field of the Hartree type for the Mg+2 ion, 

showed that 0O did not give significantly different results for 
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the total energy if the self-potential of the conduction 

electrons was due to electrons with one type of spin only or 

to electrons with two different types of spin. This result 

suggested (9) that the neglect of spin variables leads to 

only a slight reduction in accuracy in calculating the total 

energy of a polyvalent metal. On this basis, E0 may be 

calculated using the ion-core potential, as for the monovalent 

metals, plus the self-potential energy of the valence electron 

charge distribution within an atomic sphere due to electrons 

with one type of spin only. On this basis one may write BQ 

of equation 37 as 

energies of the lowest state and £ is the self-potential 

energy of the valence electron charge distribution within the 

volume of the sphere corresponding to the unit polyhedron. It 

should be emphasised that £.c is calculated on the basis of 

electrons with one type of spin only. 

The boundary condition for the determination of may 

be written in the form 

Eo = ̂  o + Cc# (38) 

where € 0 is the sum of the kinetic and ion-core potential 

0 (39) 

where 0O is the solution of the radial Schrodinger wave 

equation, 
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+ A ~2 + ["£ (ps) - V(r)1 0O = 0, (40) 
dr2 r dr L o -i 

for the state of lowest energy, and rg is the radius of the 

atomic sphere. In order to evaluate £.Q(rg) for atomic radii 

in the neighborhood of rQ, where rQ is the value of rg for 

which é 0 reaches its minimum, it must be assumed that in the 

range of rg of interest the ion-core potential is Coulombic 

and that V(r) = -Zfi/v, where a/ is the valence of the 

multiply charged ion. Writing R = r0o, equation 1+0 becomes 

|s + [«."•> ' v(r)] R = 0 '4D 

and the boundary condition, equation 39, becomes 

(S)r=rs = T ' (1^2) 

Through equation 1+2 it is seen that R is a function of rg as 

well as of r. The assumption was made (9) that 0O is nearly 

constant. The charge density at the surface of an atomic 

sphere was assumed equal to the mean charge density taken 

over the volume of the sphere by fulfilling the condition: 

l^oirg) J2 = tLyji |R(rs) I 2 = 1. (43) 

Raimes (9) has shown that by reason of equations 1+1, lj.2, and 

1+3 one obtains 



www.manaraa.com

23 

(44) 

which may be integrated to obtain 

£ o(rs) = yU*(~5 -
s s 

(45) 

provided that V(rg) = -2///rg. The repulsive interaction of 

the ion-core shells, of equation 32, and the non-

spherical part of the electrostatic charge distribution, 

total energy of a metal in which the clearance between ion-

cores is large (19). By regrouping terms in equation 32 the 

total energy of a metal, per valence electron, may be 

expressed (13) in terms of the valence of the ion-core as 

the terms having been kept separate for identification. The 

first term in equation 46 is the energy of the lowest state, 

£ of equation 45» The second term is the self-potential 

energy of the valence electron charge distribution within an 

atomic sphere assuming a uniform charge distribution as for 

free electrons. The third and fourth terms are, in order, 

the Fermi and exchange energies calculated according to the 

free electron approximation as given by Seitz (19). The last 

£ gk equation 32, give negligible contributions to the 

l.2^r + 2.21AT2/3 _ 0.9l6/rl/3 

(46) 
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term in equation lj.6 is the correlation energy for free 

electrons, given by the Wigner relationship (13) as 

g(rs) = ~°'916 - 0.114 + 0.0313 lnrs + 0.000£rg. (47) 
rs 

If rQ is known one may solve for rg in equation 46, at the 

equilibrium value P, by the condition that 

(fS_) =p = 0. (US) 
dr3 r 

Raimes (9) has shown that rQ may be calculated for divalent 

and trivaient metals by means of the second and third 

empirical ionization energies, respectively, of the free 

neutral atoms. For a divalent metal, rQ may be calculated 

from the relation (9) 

*'S** [9-^]f ««H-

(49) 

where- £ = (4r0 - U) )^ and u) ̂ = Ig, the negative of the 

second empirical ionization potential for a free neutral atom. 

For a trivaient metal (20) r0 is given by 

*[» " f°"/ *°* 1501 

^ = (6r0 - GO^r0̂ )2 and w ̂ = I3, the negative of the where 
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third empirical ionization potential of a free neutral atom. 

It should be emphasized that the treatment of all the valence 

electrons as free and equivalent is essential to the 

derivation and validity of equations 1+8, 49, and $ 0 .  

C. Procedure and Results for Scandium, Yttrium 

and the Rare Earth Metals 

The predominantly trivaient chemical behavior observed 

in scandium, yttrium and most of the rare earth metals as 

contrasted to the large number of oxidation states observed 

in other transition metals, such as manganese, suggests that 

the approximation of considering all the valence electrons on 

an equivalent basis may be valid for these elements. 

Additional support for the application of this 

approximation to the rare earths and related metals comes 

from the recent work of Altmann (21) and Altmann and Cohan 

(22) on the energy levels at the center of the Brillouin 

zone for zirconium and titanium, respectively. The cellular 

method was applied in the above investigations without 

introducing the sphere approximation for the cellular 

polyhedron. A computer program was developed (21) for the 

least squares fitting of the boundary conditions. The 

results for titanium and zirconium show that there are four 

d states lying very near the s, ground state in the solid. 

The proximity of the first d level to the ground state agrees 
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with the assumption that all four valence electrons have 

metallic behavior. Altmann (21) and Altmann and Cohan (22) 

suggest that a considerable amount of _s-d hybridization is 

occurring in zirconium and titanium due to the proximity of 

the js and d levels in the solid state. 

In order to calculate the atomic radius, total energy, 

and compressibility of a metal from equation I4.6 the value of 

the constant r0 must be known. The constant rQ may be 

determined for divalent or trivalent metals by means of the 

appropriate empirical ionization potential for the free 

neutral atom and the use of equations 1|9 or 50, respectively. 

The values of the third empirical ionization potentials 

needed to solve equation 50 were not available for the tri­

valent rare earth metals with the exception of lanthanum. The 

third empirical ionization potentials for scandium and yttrium 

were available. A method was developed to calculate r0 for 

those elements for which the empirical ionization potentials 

were not known. This method was based upon the construction 

of a potential from the ion-core within an atomic sphere and 

the utilization of the empirical ionic radii of the trivalent 

rare earth ions. The usual assumptions of Raimes' method (9) 

were made; namely, that (a) the ion-core is that of the atom 

stripped of all its valence electrons, (b) the core electrons 

are unperturbed in going from the free neutral atom to the 

solid, and (c) the valence electrons are equivalent. 

A potential due to the ion-core was constructed on the 

basis of the boundary conditions : 
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-rV(r) = 22 + ar + br2 (2U 

-rV(r) = 2 /V ro (52) 

The form of equations 51 and 52 is analogous to the potential 

functions used by Prokofjew (23) for sodium and Schiff (24) 

for titanium. In equations 51 and 52, r0 corresponds to the 

equilibrium cell radius for the state of lowest energy, Z is 

the atomic number, a and b are two adjustable parameters 

dependent upon the boundary conditions, and /V is the valence 

of the multiply charged ion-core. Since the ion-core 

potential and its derivative must be continuous at the 

boundary of the atomic sphere, the boundary condition is 

imposed upon equation 51 that 

The values of a and b obtained from equations 51, 52, and 

53 are : 

Substituting the above values of a and b into equation 51 

leads to the relation 

(53) 

a = -2br0, (54) 

b = 2(Z-AT)/rQ2 (55) 

-rV(r) = 2Z - 4(Z - AT )r/rQ + 2(Z -/V )r2/r02. (56) 
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It is readily seen that the potential in equation 56 is 

proportional to the atomic number close to the nucleus and 

is proportional to the net-core charge at the cell boundary. 

It is also interesting to note that through equation 56 the 

potential from the ion-core is a function of r0 as well as 

of r. 

The magnitude of the potential from the ion-core within 

an atomic sphere decreases from the nucleus to the cell 

boundary. At the ionic radius it should be equal to the 

atomic number minus a screening number for the core shell 

electrons. On the basis of this approximation the effective 

potential from the ion-core at the ionic radius rQ is given 

where S is a screening number for the outermost core shell 

in the solid. The empirical ionic crystal radii of the 

trivalent rare earth ions (25) are given in Table 3• A 

relation between rQ, rQ, and S was obtained from equations 

56 and 57. This relation is : 

by 

(57) 

(58) 

On the basis of equation 58 it is seen that the spherically 

symmetric ion-core potential within the atomic sphere 

representing the cellular polyhedron is dependent only upon 
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Table 3 

Empirical ionic crystal radii for the trivalent 
rare earth ions 

Ionic radius 
Ion (Bohr units) 

La+3 2.00 

Ce+3 1.95 

Fr+3 1.91 

Nd+3 1.8? 

Pm+3 1.83 

Sm+3 1.81 

Su+3 1.80 

Gd+3 1.76 

Tb+3 1.74 

Dy+3 1.70 

Ho+3 1.68 

Er+3 1.66 

Tm+3 1.63 

Yb+3 1.61 

Lu"3 1.59 

the atomic number, the ionic radius, the constant rG, and the 

screening number of the outermost core shell. The 

approximation is now made that the difference between the cell 
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radius rQ and the ionic radius rc is constant for all the 

trivalent rare earth metals. The empirical third ionization 

potential of 1.4158 Ry (26) for lanthanum was used to 

calculate r0 as 3*47 Bohr units by means of equation 50. 

Using this value of rc for lanthanum and the empirical ionic 

radius of 2.00 Bohr units obtained from Table 3» the constant 

(r0 - rc) was found to be 1.47 Bohr units. This 

approximation results in the following relationship for r0 

for the trivalent rare earth metals: 

r0 = 1.47 + rc, (59) 

where the values of rQ needed to solve equation 59 are given 

in Table 3« 

In order to calculate r0 for europium and ytterbium in 

which the I^f shell is presumed half-filled and filled, 

respectively, the assumption is made that the ion-cores are 

divalent in the solid state. The screening number S for the 

divalent ion-core of the element of next highest atomic 

number, since in europium and ytterbium the divalent state 

is presumed to arise from the demotion of one valence electron 

to the Ayr core shell. The ionic crystal radius for the 

divalent metal may be approximated (27) from the relation 

r+2 = r+3 (Z ' <2)2/n-1 . (60) 
(Z - s)+2 2 
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In equation 60, n is an exponent which is related to the 

repulsive forces arising from the interpénétration of the 

ions. The value of n for a xenon or pseudo-xenon core is 

given by Pauling (27) as 12. The screening numbers for the 

rare earth ions in the solid state were obtained from 

equations 58, 59, and the empirical ionic radii of Table 3* 

The screening numbers of the rare earth ions in the solid 

state are given in Table 4* A similar development was used 

for cerium with the quadrivalent ionic crystal radius being 

determined from the relation (27) 

Ionic radii for divalent europium and ytterbium of 2.01 

and 1.81 Bohr units, respectively, were obtained from 

equation 60 by substitution of the appropriate values from 

Tables 3 and 4« Once rc and S have been determined for the 

divalent metal it is a simple matter to calculate rQ from 

equation 58. The calculated equilibrium atomic radii for 

the state of lowest energy of the rare earth metals plus 

scandium and yttrium are given in Table 5» The values of 

r0 for scandium and yttrium in Table 5 were evaluated 

from equation 50 through use of the third ionization 

potentials (26) of 1.820 and 1.514 Ry, respectively. The 

second ionization potential of europium was available from the 

compilation of Sherman (28). A value of rQ for europium was 

r+4 = r+3 (2 - S)+i (JL)
2/11-1 

4 
(61) 
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Table 1+ 

Calculated screening numbers for the rare earth 
ions in the solid state 

Screening 
Ion number 

La+3 44.31 

Ce"3 44.84 

Ce+4 44.31 

Pr+3 45.41 

Nd+3 45.96 

Pm+3 46.49 

Sm+3 47.15 

Eu+3 47.88 

Eu+2 48.37 

C-d+3 48.37 

Tb+3 49.00 

Dy+3 49.46 

Ho+3 50.06 

Er+3 50.57 

Tm+3 51.16 

Yb+3 51.74 
+2 

52.31 Yb 52.31 

Lu+3 52.31 
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Table 5 

Calculated equilibrium atomic radii for the state of lowest 
energy of the rare earth metals, scandium, and yttrium 

Atomic rQ 
Element number (Bohr units) 

La 57 3.47 

Cea 58 3.42 

Ceb 58 3.09 

Pr 59 3.38 

Nd 60 3.34 

Pm 61 3.30 

Sm 62 3.28 

Eu° 63 3.67 

Eud 63 3.66 

Gd 64 3.23 

Tb 65 3.21 

Dy 66 3.17 

Ho 67 3.15 

Er 68 3.13 

aTrivalent; calculated from equation 59» 

b Quadrivalent ; calculated from equations 58 and 61. 

0Divalent ; calculated from equations 58 and 60. 

D̂ivalent; calculated from equation 49. 
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Table 5> • (Continued) 

At omic ro 
Element number (Bohr units) 

Tm 69 3.10 

Ybc 70 3.38 

Lu 71 3.06 

Sce 21 2,56 

Y6 39 3.20 

^Calculated from equation $0. 

evaluated from equation 49 and the second empirical 

ionization potential of O.838 Ry. 

The equilibrium atomic radii were obtained from equations 

46 and 48 using the values of rD given in Table The 

adiabatic compressibility, ̂  , at 0°K is the reciprocal of the 

bulk modulus B and is obtained from equation 46 at the 

equilibrium radius by the relation 

K = B = ('̂ vi)0oK • (62) 

The total energy of a metal was calculated from equation 46 at 

the equilibrium atomic radius. The cohesive energy of a metal 

was calculated as the difference between the total energy of 

the solid and the ionization energy of an equivalent number of 

valence electrons in the free neutral atoms. The calculated 
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atomic radii, compressibilities, total energies, and cohesive 

energies of the rare earth metals, scandium, and yttrium at 

0°K are given in Table 6. The available experimental data 

are also listed for comparison. The observed atomic radii at 

room temperature, with the exception of quadrivalent cerium, 

were obtained from the data of Spedding et. al. (3)• The 

atomic radius of quadrivalent cerium was obtained from the 

work of Lawson and Tang (2). The observed adiabatic 

compressibilities at room temperature, with the exception of 

yttrium, were obtained from the data of Smith e_t. al. (Lj. ) • 

The observed adiabatic compressibility of yttrium at 4»2°K 

was obtained from the single crystal elastic constants (5 ) • 

The isothermal compressibilities given in Table 6, with the 

exception of europium and quadrivalent cerium, were obtained 

from the room temperature data of Bridgman (29). The 

isothermal compressibility of quadrivalent cerium was obtained 

from Swenson" and the corresponding value for europium from 

the compilation by Gschneidner (30). The observed cohesive 

energies at 298°K were obtained from the compilation of 

Wigner and Seitz (31) for lanthanum, cerium, scandium, and 

yttrium. The observed cohesive energies for the rest of the 

rare earth metals at 0°K were obtained from the results of 

Trulson (32). 

^Swenson, C. A., Ames, Iowa. The compressibility of 
cerium. Private communication. 1959. 
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Table 6 

Atomic radii, compressibilities, total energies, and cohesive energies 
for the rare earth metals, scandium, and yttrium 

Atomic Compressibility Total Cohesive 
radius (x 10° cm^/kg) energy energy 
(A) (kcal/mol) (kcal/mol) 

Atomic „ h 
Element number Calc. Obs. Gale. Obs• Obs. Calc. Obs• Cale» Obs• 

La 57 2.49 2.08 3.47 3.24 3.9 888 922 54 88 

Cec 58 2.46 2.02 3.29 4.95 4.7 892 -- 84 

Ced 58 2.28 1.89 1.58 —  —  3.5 1636 — — — 

Pr 59 2.44 2.02 3.21 3.28 3.7 905 — 85 

Nd 60 2.42 2.01 3.14 3.02 3.0 912 — —  77 

Pm 61 2.40 * — 3.06 « •  — — • 921 —— 

aAdiabatic measurements. 

bIsothermal measurements. 

^Assumed trivalent. 

^Assumed quadrivalent. 
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Atomic Compressibility Total Cohesive 
radius (x 10" cm^/kg) energy energy 
(A) (kcal/mol) (kcal/mol) 

Atomic , 
Element number Calc• Obs * Calc• Ob s.a Obs• Calc• Obs. Calc• Obs• 

Sm 62 2.38 1.99 2.88 2.56 3.5 926 -  - —  —  50 

Eu 63 2.56 2.27 8.13 — 7.5 415 435 23 43 

Gd 61+ 2.35 1.99 2.78 2.52 2.5 935 - - -  - 82 

Tb 65 2.34 1.97 2.74 2.45 — 939 — - — - - -

D7 66 2.32 1.96 2.65 2.39 2.6 948 — —  — 72 

Ho 67 2.30 1.95 2.57 2.14 2.5 952 — —  — - 75 

Er 68 2.29 1.94 2.52 2.11 2.5 957 - - — 76 

Tm 69 2.27 1.93 2.47 — 2.6 963 — —  -  —  58 

Yb 70 2.40 2.14 6.33 7.12 7.5 438 — —  - - 40 

Lu 71 2.25 1.92 2.36 — 2.3 972 — 94 

Se 21 1.95 1.81 1.37 — — —  1102 1104 91 93 

Y 39 2.33 1.99 2.69 2.31 — — 944 1000 47 103 
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The experimental and calculated atomic radii are 

plotted against atomic number for the hexagonal rare earth 

metals in Figure 1. A similar plot of the calculated 

adiabatic compressibility versus atomic number is shown in 

Figure 2, in comparison to the results obtained by Smith 

et. al. (4)• 

Screening number of 28.51 and 15.08 for the trivalent 

ions of yttrium and scandium, respectively, were evaluated 

from equation 58 by substitution of the appropriate values of 

rQ from Table 5 and the empirical ionic radii (33) of 1.74 

and 1.53 Bohr units. The calculated screening numbers for 

the trivalent ions of lanthanum and yttrium of 44*31 and 28.51, 

respectively, compare favorably with the values of 43*30 and 

27.35 estimated for the free ions (34)» An estimated 

screening number of 11.11 for the free trivalent scandium ion 

(34) Is in poor agreement with the calculated value of 15.08 

for the solid. 
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Figure 1. Variation of atomic radius with atomic number for the hexagonal rare 

earth metals 
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Figure 2. Variation of adiabatic compressibility with atomic number for the 
hexagonal rare earth metals 
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IV. CALCULATION OF THE ELASTIC SHEAR CONSTANTS 

A. General Considerations 

It is convenient to divide the total energy E of a metal 

lattice in the following way: 

E = Eo + Ep + Eex# + Ecorre+ Ej + El. (63) 

Equation 63 is just equation 32 rewritten in a qualitative 

fashion for ease of explanation. EQ is the energy of the 

lowest electronic state consisting of the sum of the kinetic 

energy of the lowest state, the potential energy due to the 

interaction of an ion with the negative charge inside an 

atomic sphere of radius rg, and the self-potential energy of 

the valence electron charge distribution within an atomic 

sphere. E_ depends only on r and is thus a function of the 
O S 

volume only. Ep denotes the mean Fermi energy of the 

valence electrons. For monovalent metals the Fermi surface 

is approximately a sphere lying wholly within the first 

Brillouin zone and the Fermi energy depends only on the 

atomic volume. For polyvalent metals the effect of dis­

continuities at the zone boundaries due to the occupation of 

higher electronic states must be taken into account. The 

Fermi energy is strongly dependent upon the geometry of the 

Brillouin zone for polyvalent metals. The exchange and 

correlation energies, denoted by EeXi and Ec0rr, respectively, 
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in equation 63 are a function only of atomic volume for free 

electrons. For polyvalent metals the exchange and correlation 

energies, like the Fermi energy, depend on the Brillouin zone 

structure. The non-Coulomb repulsive interaction of the ion-

cores- Ej is due to the overlapping of core shells and is 

dependent upon the atomic volume and the crystal structure. 

The final term in equation 63 is due to the non-spherical part 

of the charge distribution. E^ depends upon the volume and 

the crystal structure. 

When a monovalent metal is sheared at constant volume 

there are two important contributions (6) to the elastic 

shear constants: (a) a purely electrostatic term arising from 

Sl representing the difference between the electrostatic 

energy of the ion-cores in the strained and unstrained 

geometry, and (b) a term arising from Ej due to the change in 

the short-range repulsive interactions of the core electrons. 

For polyvalent metals two additional terms arise from the 

Fermi energy and from the exchange and correlation energies. 

The Fermi, exchange and correlation terms are due to the shear 

distortion of the Brillouin zone. It is extremely difficult 

to make any estimate of the contribution of the exchange and 

correlation energies to the elastic shear constants, and these 

terms are neglected in the first approximation. 



www.manaraa.com

45 

B. The Elastic Shear Strain Energy 

For a hexagonal crystal there are three volume-conserving 

strains which may be taken as pure shears. C corresponds to a 

shear which changes the c/a ratio at constant volume and 

leaves the symmetry of the crystal unchanged. The shear 

corresponding to G is shown in Figure 3A. C1 corresponds to a 

shear which changes the angle between any pair of orthogonal 

axes in the basal plane of the crystal leaving the c axis 

unaffected. The shear corresponding to G* is shown in Figure 

3B. C" corresponds to a shear which tilts the c axis with 

respect to the basal plane. The shear corresponding to C" 

is shown in Figure 3C. The relations between the shear 

constants C, C', and C" and the ordinary elastic constants 

are shown in the following paragraphs. 

Consider a shear corresponding to C. The sheared 

hexagonal close-packed lattice can be expressed by the lattice 

vectors 

ax = a/A(l,0,0), 

&2 = a/A(-i, {3/2,0), 

- c/A(0,0,l/^ ). 

In order to fulfill the condition of constant volume during a 

finite strain A3 = 1 /J . At the equilibrium position J = 1. 
A 

The displacement vector is expressed as 
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Figure 3. Volume-conserving strains of a hexagonal crystal 

A. Shear corresponding to C 
B. Shear corresponding to C1 

C. Shear corresponding to C" 



www.manaraa.com

u1 

z 
tr 
i 
\ 
i 



www.manaraa.com

lj-8 

= r »(e ), (64) 

where 9 is the initial position vector and (e) is the strain 

tensor. For a general point with position vector r, the 

position vector r1 after displacement is given by 

r' = r + ̂  • (65) 

The components of (e) are obtained in terms of the strain 

parameter^ by use of the lattice vectors for the strained 

and unstrained geometry and equations 64 and 65• The 

components of the strain tensor (e) for the shear 

corresponding to C are : 

el = e2 = (A - 1), 

e^ — ( /A ) - 1 t 

e4 = ©5 = e6 = o. 

The elastic strain energy of a hexagonal crystal can be 

written in terms of the five independent elastic constants and 

the components of the strain tensor. This relation is : 

2 2 2 
W = W0 + &cii(ei + 8g) + sCj^e^ + c12ei62 

+ o13(aie3 + e2e3) + *0^1 + ep + 1£,)e|, 

( 66) 
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where e1, e2, and e^ are the normal strains and -g-e^, #e^, &e^ 

are the shear strains. The shear constant C is derived as 

G = 9/2 (d2W/d̂  2)̂ - _2 = + c12 + 2c33 - 4̂ 13 (67) 

"by substitution of the appropriate values of e into equation 

66 and differentiation with, respect to the strain parameter. 

The shear strain j reflects a change in the reciprocal 

A 
lattice which can be represented by the vectors b j as : 

bi = 2IT A/a( 1, -1/1/7,0), 

= 2TT A/a(0,2/O,0), 

A 
b. = 2TT A/c(0,0, j ). 

For C the direct and reciprocal lattice vectors can be 

written (8) in terms of a strain parameter /y as : 

a1 = 3.^2(1,0,0), 

a2 = a If 2 ( ~k, (1/2*1 ,0), 

a^ = c(0,0,1), 

= 2-irrç -i/a (1//̂  

A 
b2 = 2r^/a (0,2/fy,0), 

bo = 2TT/c (0,0,1). 

This strain results in the following relationship between C1 



www.manaraa.com

20 

and the ordinary elastic constants : 

C* = (d2W/d 2̂)^ -;L = i(c1]L - c12). (68) 

Corresponding relationships for C" can be written (8) in 

terms of a strain parameter £ as : 

A 
a 2 — a(l,0,6), 

a2 = a(-i, |)3!/2,-& 6), 

a^ = c(0,0,l), 

= 2TT/a(l,l/ /?,0), 

b2 = 2TT/a(0,2/\T3,0), 

b^ = 2ir/c(- 6 ,0,1), 

and 

0" = (d2w/de2) =0 = C^. (69) 

Since the crystal is under no external stress at zero 

strain the condition for equilibrium is 

(dW/dx)Q = 0, (70) 

where W is the elastic strain energy of equation 66 and x 

stands for one of the strain parametersj£ , Ifj, or £ . The 

subscript zero implies the value at the equilibrium position. 
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Equation 70 must be obeyed by the total strain energy and is 

not necessarily valid for the individual contributing terms. 

The non-spherical part of the electronic charge 

distribution is represented in equation 63 by Ê . EL is 

equal (19) to the difference between the energy E^ of a 

lattice with positive point charges embedded in a uniform 

negative charge distribution and the energy Eg of a uniform 

spherical charge distribution within an atomic sphere of 

radius r . E depends on r and therefore changes with atomic O S S 

volume only. For a volume conserving strain there is no 

contribution by Eg to the elastic constants. 

By an extension of Ewald's method (35) for calculating 

the electrostatic energy of a lattice Fuchs (7) has 

expressed E^ in the form: 

C. The Electrostatic Energy of the Lattice 

1 1 

(71) 

where 

x 
2 exp - t dt, the normal probability 

o 

integral, 
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= lattice vector joining any two points in the lattice, 

e = charge of an electron in esu, 

h^ = vector of the reciprocal lattice, 

_XZ.= atomic volume, 

E = arbitrary parameter of the dimensions of reciprocal 

length to cause rapid convergence of the series. 

The dash on the summation sign indicates that the terms where 

h^ = 0, = 0, respectively, are to be excluded. The second 

derivative of E^ with respect to a strain parameter x is 

A,.. ̂  2 « if ['£ à ' f A dx2 0 2 IT J*. 

+ 2 ) (Si!)2 - (i| -V -V) 
h,6 dx E ĥ  h]_4 dx J L1 

2 
+ !_ 

2 

<Ç""t 2 eXp( -E2R̂ 2) j 

L I 
^ ̂ ' (2E3 + SSL) (dRl,2 

R_2 dx 

1 

2t . S. (1^1)1 + 
1 - f(BRl) j 1 (El)2 . 

R_ dx2 I R 2 / R]_ dx dx2 J 
(72) 

There are two complications that enter when E^ is 

considered for an actual metal; namely, (a) the original non-

uniformity of the actual electron distribution, and (b) the 
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additional modulation of the electron distribution caused by 

the elastic distortion of the lattice, which tends to lower 

the associated strain energy. If one assumes that the 

electron distribution is spherically symmetric within an 

atomic sphere representing a cellular polyhedron and elsewhere 

constant, the first effect can be accounted for by 

multiplying by (/)"eff ) where ( ) is ratio of the 

charge density at the cell boundary to its average value 

throughout the cell. On this basis Leigh (7) has suggested 
p 

that the charge (e) in equations 71 and 72 be replaced by 

(/J"eff0)2 with 

AT = ^[K 2M 2  - {#u0
2(rs) - p(rs)j 2JS. 

(73) 

In equation 73 M" is the ionic charge, uQ = N0O is the wave 

function for the state of lowest energy normalized over a 

single atomic cell, -TZ. is the atomic volume, and p the 

electron density. Raimes (18) has shown that in divalent 

magnesium uQ2(rg) is almost equal to the average value of 
p 

uQ (r). If this result holds true for polyvalent metals in 

general, equation 73 takes the form 

Ateff 2 - £at - P(rs)j 2J • (7i+) 

For the case of a perfectly uniform electron distribution 
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-XL^(rg) is equal to AT and yVeff =ytT. 

The influence of the second complication, the change in 

the spatial distribution of the electrons when the lattice is 

sheared at constant volume, can be treated in terms of the 

energies of the higher electronic states. Occupied states 

near the zone boundary are strongly affected by the 

distortion, and tend to reduce the electrostatic contribution 

to the elastic shear constants. Reitz and Smith (8) have 

postulated that the combined effect of non-uniform electron 

density, the change in the spatial distribution of the 

electrons during distortion, and electron relaxation effects 

will be such as to reduce the electrostatic contributions to 

the elastic shear constants of polyvalent metals to about one-

half the maximum, value. The values of the derivatives of 

R]_ and hj needed to solve equation 72 for a hexagonal close-

nacked metal under shear strains G, C', and C" are given in 

Apoendix A. 

D. The Non-Coulomb Repulsive Interactions of the Ion-Cores 

The non-Coulomb repulsive interaction energy of the ion-

cores is represented in equation 63 by Ej. The energy Ej per 

atom is 

(75)  
R 
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The second derivative of E% with respect to a strain parameter 

(d2ET) _ i y1 (dRl) (d2%) (d2Rl) (dWR) 

 ̂  ̂̂  ̂ e M 
Ri 

For metals in which the clearance between ion-cores is 

relatively large the interaction potential can be represent­

ed (19) as : 

WR = Ab exp [_2rc - R]/p • (77) 

The symbol A represents the dependence of the repulsive poten­

tial upon the charge of the ions and is 1.75 for a trivaient 

ion. The distance between two ions is represented by R]_ and 

the ionic radius by rc. The constants b and f are determined 

empirically from the lattice constant and compressibility and 

are equal to 10~12 erg and 0.3 x 10"^ cm, respectively, for 

most elements. 

E. The Fermi Energy 

The Brillouin zone of a polyvalent hexagonal close-packed 

metal is shown in Figure I4. There are three valence electrons 

per atom for scandium, yttrium, and the trivalent rare earth 

metals. The Brillouin zone contains sufficient states for 

exactly two valence electrons per atom. The remaining valence 

electron occupies states overlapping the boundary planes of the 

zone. Three possibilities exist as to the position of electron 

overlap: (a) B overlap across the faces perpendicular to the c 

axis defined by the \ 000,2 ] planes, (b) P overlap 

across the faces defined by the ̂ 110,l] planes, and (c) Q 
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Figure 4. The Brillouin zone of a hexagonal close-packed 
metal showing the positions of electron overlap 
and holes 
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overlap across the faces defined by the ^110,0 J planes. 
If the Brillouin zone is not full there are holes in the zone 

and an increased number of overlap electrons. The position 

of the holes in the Brillouin zone are marked by the symbol 

H in Figure 4« 

The contribution of the Fermi energy to the elastic 

shear constants arises from electrons of wave-number not equal 

to zero. The lack of information concerning the nature of the 

energy surfaces for the rare earths and related metals 

necessitates some simple assumptions consistent with the 

nearly-free electron theory of metals in order to evaluate 

the contribution of the Fermi energy to the elastic shear 

constants. Following Leigh (7) the Fermi energy is broken 

up into two parts, (a) a contribution to the Fermi energy 

based upon the assumption of a completely filled Brillouin 

zone (¥p)> and (b) a contribution from overlapping electrons 

and holes ). The overlap-hole term compensates for the 

neglect of holes in the full zone term by assigning a 

negative value to the energies of the holes. The contribution 

to the elastic shear constants from a completely filled 

Brillouin zone arises from the energy changes which accompany 

distortion and are due to the shift of the Brillouin zone 

boundaries. The overlap-hole contribution to the elastic 

shear constants arises from the fact that strain distortion 

causes a displacement of the Fermi surface ; this displacement 

is accompanied by a simultaneous transfer of electrons from 
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one overlap position to another. 

By dividing the Brillouin zone into tetrahedra as 

proposed by Leigh (7) the full zone contribution to the 

elastic shear constants may be calculated. One such tetra­

hedron is shown in Figure 5» The vertices of the tetrahedron 

are the origin 0, the symmetrical center P of a face (which 

even in the strained zone is the point at which the face is 

met by the perpendicular from the origin), a corner point R 

of the face, and the foot Q of the perpendicular from P to 

an edge of the face adjacent to R. As suggested by Leigh 

(7) the one-electron energy is approximated by 

E(k) = o( 0("îi2/2m) j^k2 - À p2(kz/p)2/̂  + q2(ky/q)2̂  

+ r2(kx/r)2/X| J , (79) 

where kz, ky, kx are measured along p, q, and r, respectively, 

and o(Q is the inverse effective mass ratio (m/m'"') for the 

center of the Brillouin zone. The parameter \ varies between 

0 and 1.0 and is chosen so that (dE(fi)/dk) is zero at the 

zone boundaries. The contribution to the Fermi energy by each 

tetrahedron, obtained from equation 79» is : 

(WP)tet. = (0/4It 3) (*2/2m) (pqr/10) Fp2 + Gq2 + Hr2J , 

(60) 

where 
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Figure 5>. View of part of the Brillouin zone showing one 
the tetrahedra used to compute the full-zone 
energy 
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F = 1 - 5À2/(2 + 3A ), 

G = 0.5 - 5À3/(2 + 3 A)d + X ), 

H = 1/6 - 5ÀV(2 + 3 A ) ( 1 + À )(2 + À ). 

The first and second derivatives of the full zone energy 

are fairly insensitive to the value of }\ (7). On this basis 

the actual values calculated for the full zone contribution 

are those for \ = 0. Since p, q, and r are related to the 

reciprocal lattice vectors the contribution of a completely 

filled Brillouin zone to the elastic shear constants may be 

obtained by differentiation of equation 80. 

In a calculation of the elastic shear constants of 

magnesium Reitz and Smith (8) calculated the full zone 

contributions to the elastic shear constants G and G1. Seven 

different tetrahedra were required for calculating the full 

zone contribution to C and eighteen different tetrahedra for 

G1. The full zone contribution to C" was not computed due to 

the low symmetry of the shear distortion. The values of p, q, 

and r for the Brillouin zone of a polyvalent hexagonal close-

packed metal for the shears corresponding to G and G1 are 

given in terms of the a/c ratio in Tables 7 and 8 respectively. 

The full zone contributions to C and G1 for a hexagonal close-

packed metal are given in Appendices 3 and G respectively. 

The full zone contribution to C" was not computed. 
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Table 7 

Values of p, q, and r for the Brillouin zone of a hexagonal 
close-packed metal under a shear corresponding to C 

Tetrahedron Face Quantity 

B p^ = "1/3 (a/c)J 

qx = 2lTa-|-1"1//3 (1- 3A(a/c)2J 2) 

r = 2TT-{ (1- 3A(a/c)2J2) 
J- 3a —1 

P2 = 21r-^l/3 <1 + 3A(a/o)2J 2>* 
a/31 J 

q2 = ĵ"173 (a/c)( 1 + 3A(a/c)2j2)* 

r2 = rl 

p3 = Pa 

q = 3*. f ~1/3 (1 + Vk(a/c)2f 2)° 
3 3a (1 + (a/cl^yf 2)$ 

H/-V3 -/ 
3 3a (1 + (a/c)2^ 2F 



www.manaraa.com

64 

Table ?• (Continued) 

Tetrahedron Face Quantity 

Q 

q4 " q3 

Q Pr- = 
2, f -1/3 

5 

r5 

5 &fp 

= 2 ïï f ~1/3 

3a 

= (aAlJ 

p6 = p5 

q, =  2 ff f  -1 / 3  (l+3(a/c)!f2+°/L(a/c)V4)* 
6 3a (l+a/c)2jf2)* 

r6 " r3 

% p7 = p5 

q? = q 7 " H6 

r7 = \ 



www.manaraa.com

65 

Table 8 

Values of p, q, and r for the Brillouin zone of a hexagonal 
close-packed metal under a shear corresponding to 01 

Tetrahedron Pace Quantity 

3 p, = £JL(a/c) 
J- a 

qi = 2^1)*(l - 3/y (a/=)2) 

B 

if? 

rl = f - q 2/3 - i(a/c)2tf ) 

p2 = Pi 

q2 = — + ̂ 2/3 )" 

(l - (a/c)2^/(l + j 

r3 = JT3»T(1 + ^2/3,5 

1 - (a/o)2 (? - *?2) 
2^ (1 + %2/3) 
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Table 8. (Continued) 

Tetrahedron Face Quantity 

B r3 = ̂  9/^(1 + n\ 2/3 )* 

1 - (a/c) 
2 

\ 

(1 + iy 2/3) 

=ifef C 1 +4" ( a / o >  

= l.(a/o)^l +^(a/c)2)S 

r4 ri 

P g. JL( 11 + 1*3). u/e)2)i 

q- = —(a/c) (l + (a/c)2 
5  a  I  ( I t  

i 

^ 2/3) 

r5 = r2 

p6 = p5 

q6 " q5 
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Table 8. (Continued) 

Tetrahedron Pace Quantity 

10 

p7 = p4 

q U=..y2/Z).(l+tfl,1l la/e)!lj 
7 a (i+3A^ (a/c)2(l+ t,Z/},)y 

r = I (a/c) -7 ilzMÙl ^ 
7 2a A+3A# (a/c)2(l+ |2/3) V 

8 P P8 = P5 

r 8 "  r 7 

Pg = P^ 

q9 q7 

= E(a/=) (l+i,2/3)( 1+3/2^ (a/c)2) 
9 2a ( 1+3/4^ (a/c)2(1+^2/3) ) 2 

1̂0 = 

q10 = q8 
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11 

Table 8. (Continued) 

Tetrahedron Face Quantity 

10 p r10 = r8 

13 « 

11 p5 

TT /u* ((1+ #2/3) + (a/c)2̂ ] 

( l+(a/c)2 }) * 

rll = 5a<a/c) (l+ta/o)2"»/) * 

12 P p12 = p5 

q12 = qll 

P . —(a/o) Cl-l/3 2̂;(a/c)2̂ ) 
a (l+(a/c)2̂ j 2 

pu • ? 1"1 « • f >* 

i 

q13 ~ ̂ *1 (1 + 2̂/3)8 

ri3 = r (a/o) 

14 9 P14 = p13 
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Table 8. (Continued) 

Tetrahedron Face Quantity 

Ik Q q — 

15 Q 

11+ a 

[(It »2/3)2(^*(a/c)2+ 

1 + JL (a/c)2 (1 + 4f2/3)J ^ 

rll+ r7 

'15 = Pi3 

li5 " qiU 

rl5 r9 

« "i6 • !#. r 
d - 12/3» 

P16 ~ r13 

17 9 P17 = P16 
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Table 8. (Continued) 

Tetrahedron Pace Quantity 

17 Q q1? = "* 

[(1-w2/3)2+'g)2̂  (?- )3a 

1 + (a/c)2 2 

= L (a/o) f 1-^/3 + (a/c)2̂ ) 

17 a ( i + (a/c)2̂ ) 3 

18 % Pi8 = Pl6 

ql8 = ql6 

rl8 = rll 

The overlap-hole contribution to the elastic constants 

arises from (a) the displacement of the Fermi surface during a 

shear at constant volume, and (b) the simultaneous electron 

transfer from those faces receding from the origin of the 

Brillouin zone to those approaching it. It follows from the 

symmetry of the reciprocal lattice that the perpendicular 

distances from the origin to opposite faces of the Brillouin 

zone are always equal. These can then be summed in pairs. 
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Retaining the same notation as Leigh the subscript i denotes 

the type of overlap (or hole), and j the number of pairs of 

each type. The density of states N(E) is defined as the 

number of states per unit energy range. The quantity N^(E-E^) 

represents the contribution to W(E) from the pair of faces 

with energy E . at the center of a face. The total number of 

carriers in each pair is denoted by j• The quantity n^j is 

positive for electron overlap, and negative for holes. The 

derivative of the Fermi level with respect to strain is 

given (8) by the relation 

13 _1 
(âX) , 

dx o f1 Hl( Iî-eJ) 

ij 

ij 

(81) 

The first and second derivatives of the overlap-hole contri­

bution to the Fermi energy with respect to strain are given 

(8) by 

and 

(82) 

ij 

2 II 

dx 2 o 
U ij 
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+ % Hi( IT • Eijl' i'lr'o • (83) 

ij 

In order to obtain numerical results for equations 82 and 

83 it is assumed that the energies are proportional to the 

distance of the electron overlap position (or hole position) 

from the origin. The first and second derivatives of E^. with 

respect to the strain are assumed proportional to Ejj, the 

constant of proportionality being determined uniquely by the 

geometry of the Brillouin zone. On the basis of the nearly-

free electron model the electron overlap positions are 

approximated by spheroids. B overlap consists of one pair 

or one complete spheroid, P overlap six spheroids, and Q 

overlap two spheroids. If the holes are not too large they 

may also be approximated by spheroids. The holes make up six 

spheroids. It should be emphasized that approximation of the 

holes in the Brillouin zone by spheroids is consistent with 

inverted spherical energy surfaces for the holes as long as 

the number of holes is not too large. 

On the basis of the assumption of spheroidal energy 

surfaces the number of overlapping electrons (or holes) of 

type i is given (7) by 

">-57* firr 

where -52. is the atomic volume and ok ̂  is the inverse effective 
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mass ratio (m/m'"') at the overlap or hole position. The 

density of electron (or hole) states of type 1 with spheroidal 

energy surfaces is given (7) by the relation 

The decomposition of the elastic shear constants at 0°K 

into an electrostatic term, a core-repulsior term, and a 

Fermi term provides a relationship from which one can infer 

something about the number and position of overlap electrons 

in a metal. A knowledge of the following parameters is 

necessary in order to evaluate the individual contributions 

to the elastic shear constants and the positions of electron 

overlap : (a) the measured values of C and G1, (b) the 

density of states, N(S), at the Fermi level, (c) the inverse 

effective mass ratio, ofor the center of the 

Brillouin zone, (d) the energies, , of the overlap 

electrons and holes in the Brillouin zone, (e) the Fermi level, 

and (f) the electrostatic reduction factor. 

The experimental values of C and C' at 4.2°K were 

available for yttrium (5) • An estimated value of the density 
O O _ -j 

of states at the Fermi level in yttrium of 69.8 x 10 erg" 

(82)  

F. Results 
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am~^ was obtained from Jennings" based upon specific heat 

measurements'"""". The values of q( Q$ the E^j, and the Fermi 

level may be determined from the soft X-ray spectrum of an 

element. This information was not available for yttrium. 

Values of o(q, the E^j, and the Fermi level were adjusted 

by simultaneously varying and the electrostatic 

reduction factor in order to fit the measured values of C 

and C1. 

In order to evaluate the various shear constants 

equation 70 must be valid for the total strain energy. At 

the observed c/a ratio of yttrium at 0°K (36) of 1.567 

(dE^/d^ )0 = 58.5F x 10* erg cm~ f̂ 

(d.Ej/dJ )Q = 0.6 x 10^ erg cm"^, 

(dWp/dJf )Q = -6.9o(0 x 109 erg cm"^, 

where F is the electrostatic reduction factor and o(Q is the 

inverse effective mass ratio for the center of the zone. The 

relations for determining the individual contributions to 

(dW/djf )0 are given in Appendix D. The overlap-hole contri-

XX 
but ion, (dWp depends upon the derivatives of the 

'"Jennings, L. D., Ames, Iowa. The specific heat of 
yttrium. Private communication. 1959. 

"'"'The value of N(E) was based upon the extrapolation 
of measurements of the specific heat at 12°K. 
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various E^j with respect to the strain. These values for 

yttrium at 0°K are listed in Table 9. The condition that 

(dW/d^ )0 = 0 was utilized to estimate the numerical value of 

(dWpF/d^ )0« Choosing o(0 equal to one and the electrostatic 

reduction factor F equal to one-half (8) the derivative of 

the overlap-hole contribution with respect to the strain 

parameter was estimated as 

(dWpI/d^ )0 = -22.95 x 10^ erg cm~^. (86) 

The interesting result is that the number in equation 86 is 

negative; hence, overlaps or holes with a negative n^j(dE^j/ 

dj )0 must be predominant in yttrium at 0°K. This result 

considered in light of the values in Table 9 shows that P 

and/or Q overlap must be predominant although 3 overlap may 

also be present. The result of equation 86 cannot be 

corroborated for the shear corresponding to C1 since 

(dE]_/d/y] )0, (dEj/d/yj )Q, (dWp/d*f )Q, and (dWjp/dty)0 are each 

identically zero for all c/a ratios (8). 

If the nearly-free electron approximation is valid for 

yttrium, the inverse effective mass ratio, o( for the 

center of the Brillouin zone cannot differ very greatly from 

the free electron value of one. In addition the electrostatic 

reduction factor, F, cannot be much less (8) than one-half. 

At the observed c/a ratio of yttrium at 0°K (36) of 1.567 

Cl = 9/2 (d.2Ej./df2)o = 29.42F x 10^ dynes/cm^, 
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Table 9 

First and second derivatives of the various overlap and 
hole energies in yttrium at 0°K with respect to 

the shear parameters ̂  and 

Number of (d£U)n (Sii) (d E1J) (SfEli) 
?ype spheroids ° 0 2 o dv^ ° 

P 2 -0.2006 Ep 0.7670 Ep 0.9557 Ep 0 

2 -0.2006 Ep -O.3835 Ep 0.9557 Ep 1.1505 Ep 

2 -0.2006 Ep -O.3835 Ep 0.9557 Ep 1.1505 Ep 

Q 2 -(2/3) Eg 0 (10/9) (3/2) Eg 

3 1 (4/3) Eg 0 (4/9) Eg 0 

H 2 0.0330 E 0.0758 Eg 1.4068 Eg 1.2824 Eg 

2 0.0330 Eg 0.0758 Eg 1.4068 Eg 1.2024 Eg 

2 0.0330 Eg -0.1515 Eg 1.4068 Eh 0.8568 Eg 

Cj = 9/2( d2Ej /djf ̂  )Q = 1.44 x 1011 dynes/cm^, 

Gp = 9/2/&J 2)o = 11.21^ Q x 1011 dynes/cm2. 

On the basis of the above values and the measured value of 

C (5) of 19.67 x 10^ dynes/cm2 the overlap-hole contribution 

to C must be negative. As seen from equation 83 and Table 9, 

a negative overlap-hole contribution to C is due primarily to 
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B-type overlap. The individual contributions to 01 from the 

electrostatic, core-repulsion, and full zone terms are: 

= (d2E M4[2)0 = 5.120F x 1011 dynes/cm2, 

Cj = (d2Ej/d 2̂)Q = 0.444 x 1011 dynes/cm2, 

c'p = (d2W^/d 2̂)Q = 1.8l5 0̂ x 1011 dynes/cm2. 

On the basis of the above values and the measured value of C' 

(5) of 2.715 x lO1"*" dynes/cm2 the overlap-hole contribution 

to C' must also be negative. Examination of equation 83 and 

Table 9 indicates that a negative overlap-hole contribution to 

C is due to P-type overlap. In order to fit the measured 

values of C and C' at 0°K on the basis of only B and P 

overlaps an appreciable number of holes in the Brillouin zone 

must be assumed. The number of holes per atom in the 

Brillouin zone was obtained from, the relation 

6nR = nB + 6n-p - 1, (87) 

where n^ is the number of holes per atom associated with one 

of the six spheroids which approximate the holes, is the 

total number of electrons per atom in B overlap positions, and 

np is the number of electrons per atom associated with one of 

the six spheroids of type P. The numerical values of nB, 6np, 

and 6n were obtained from the relations 
H 



www.manaraa.com

78 

N(E) = 1.5 —— + 9 -—^ + 9 .—^ . (88) 

|3o - EB| TO - BPI |F° -

and 

(dW^/d^ )Q = 1.3333 nBEp - 1.2036 npEp - 0.1980 n%%. 

(89) 

The Ej_j were modified by means of equation 79 so that 

(dEjj/dk) was zero at the boundaries of the Brillouin zone. 

The value of pC q, and hence the E^ j and J were obtained 

by simultaneously varying ̂  and the electrostatic reduction 

factor in order to obtain reasonable agreement with the 

measured values of C and C'. The quantities used in equations 

83, 88, and 89 to determine the overlap hole contribution to 

the elastic shear constants are given in Table 10. 

Table 10 

Quantities used in equations 83» 88, and 89 to determine 
the overlap-hole contribution to the 

elastic shear constants 

Quantity 

Jo 

Oi o 

Value 

4.00 eV 

3.35 eV 

4.11 eV 

4.42 eV 

0.7 
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Table 10. (Continued) 

Quantity Value 

F 0.6 

nB 1.60 X 

H
 

OJ o
 

H
 -3 cm J 

6np 39.30 x 1021 cm"3 

6nH 10.60 X 1021 cm"3 

N(E) 69.8 X 1033 -1 -3 erg cm -> 

% 3.64 X 1033 -1 -3 erg xcm J 

6ïïp 34.27 X 1033 -1 -3 erg cm ^ 

6% 31.89 X 1033 -1 -3 erg cm 

The calculated contribution of the individual terms to the 

elastic shear constants C and C1 of yttrium at 0°K are given 

in Table 11. 

Table 11 

Contributions to the elastic shear constants of yttrium 

in units of lO^ dynes/cm2 at 0°K 

Term C C' 

Electrostatic 17.65 3.072 

Core repulsion 1.44' .444 

Full zone 7.85 1.271 
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Table 11. (Continued) 

Term C C« 

Overlap-hole -8.01 -2.257 

Total 18.93 2.530 

Experimenta 19.67 2.715 

^Obtained from the experimental values of Smith and 
Gjevre (5). 

It was not possible to obtain reasonable agreement with 

the measured values of C and G' by assuming (a) B and Q 

overlap and holes, or (b) P and Q overlap and holes. It was 

of interest to determine the effect of Q overlap, in addition 

to B and P overlaps and holes, upon the elastic shear 

constants. It was found that the assumption of more than 
21 — o 

approximately 0.2 x 10 cm"-5 Q overlap electrons made it 

impossible to obtain reasonable agreement with the measured 

values of C and 0'. The qualitative result of this 

investigation is that B and P overlaps and holes have 

occurred in yttrium at 0°K and any Q overlap that may be 

present must be small. The elastic shear constant 0" was not 

calculated due to the complexity of calculating the full zone 

contribution. A calculation of the elastic shear constants C 

and C1 for scandium and the rare earth metals was not possible 
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since the single crystal elastic constants of these elements 

have not been measured. 

As seen in Table 11, a value of o( of 0.7 was assumed 

in order to obtain reasonable agreement with the observed 

elastic shear constants. In order to determine how the 

calculated atomic radius, compressibility, total energy, and 

cohesive energy of yttrium would be affected, an inverse 

effective mass ratio of 0.7 was substituted for the free 

electron value of 1.0 in calculating the mean Fermi energy of 

equation 1|6. The results are given in Table 12 in 

comparison to the observed quantities. 

Table 12 

Atomic radius, compressibility, total energy, and 
cohesive energy of yttrium 

Atomic Compressibility Total Cohesive 
radius (x 106 cm2/l<g) energy energy 
(£) (kcal/mol) (kcal/mol) 

Cale. Obs. Cale. Obs. Calc. Obs. Gale. Obs. 

2.33 2.69 944 47 
1.99 2.31 1000 103 

2.21b 2.38 1014 117 

^Obtained from Table 6. . 

^Calculated on the basis of (p(. = 0.7. 
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The shear modulus y£( of a hexagonal metal may be 

represented in terms of the shear constants C, C1, and C" by 

means of Voigt averaging (37). This relation is : 

The overlap-hole contribution toy£( could not be calculated 

for the hexagonal rare earth metals due to the lack of the 

measured values of C, C', and C". In addition the contri­

bution to C" from a completely filled Brillouin zone was not 

calculated because of the low symmetry of the distorted zone 

and the attendant complexity of the calculations. The 

maximum electrostatic and non-Coulomb core contributions to 

C, C', and C" were calculated in order to determine whether 

a general trend of increasing shear modulus with increasing 

atomic number would be shown. A second purpose was to 

evaluate how the neglect of the full zone and overlap-hole 

contributions to JA. would affect the calculated dependence 

of the shear modulus on atomic number in comparison to the 

observed behavior (!{.)• The maximum, electrostatic contri­

butions to C, C', and C", were calculated for the hexagonal 

rare earth metals by means of equation 72, the crystallographic 

information from Table 1, and the relations given in Appendix 

A. The contributions to C, C1, and C" from the non-Coulomb 

core interactions were calculated from equations 76 and 77, 

the data from Tables 1 and 3> and the relations given in 

JUL = (1/30) (C + Î2C + 12C") ( 9 0 )  
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Appendix A. The maximum electrostatic and non-Coulomb core 

earth metals are given in Table 13. The available experi­

mental data (4) are listed for comparison. A plot of the 

calculated shear moduli of the hexagonal rare earth metals 

versus atomic number is shown in Figure 6 in comparison to 

the experimental behavior observed by Smith e_t. al. (4) • 

Investigation of Figure 6 reveals that there is a general 

trend of increasing shear modulus with increasing atomic 

number for the calculated values although the dependence 

upon atomic number differs from the experimentally observed 

variation. On this basis one can surmise that the full zone 

and overlap-hole contributions to the shear moduli of the 

hexagonal rare earth metals must have quite a different 

dependence upon atomic number than the sum of the electro­

static, and non-Coulomb core contributions. 

contributions to C, C', 
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Table 13 

Maximum electrostatic and non-Coulomb core contributions to C, C1, C", and Ll. for 
the hexagonal rare earth metals in units of 10H dynes/cm2 

Atomic 

Maximum electrostatic Non-Coulomb core 
contributions contributions 

•l . , n n I n" / I „ nu- a Element number C C1 C" G G1 C" Cale. Obs. 

La 57 24.58 3.785 1.268 2.841 2.02 0.82 0.85 0.74 3.58 1.49 

Pr 59 27.29 4.203 1.408 3.154 2.03 0.86 0.88 0.76 3.87 1.35 

Nd 60 27.73 4-271 1.431 3.205 1.95 0.79 0.84 0.72 3.93 1.45 

Sm 62 28.88 4.447 1.491 3.338 1.76 0.54 0.57 0.50 3.84 1.26 

Gd 64 30.32 4.504 1.739 3.508 1.50 0.44 0.75 0.53 4.04 2.23 

Tb 65 30.97 4.742 1.928 3.700 1.49 0.45 0.75 0.52 4.22 2.28 

Dy 66 31.34 4.866 2.075 3.821 1.44 0.45 0.75 0.52 4.34 2.54 

Ho 67 31.80 4.937 2.105 3.877 1.33 0.45 0.75 0.52 4.40 2.67 

Er 68 32.47 5.041 2.149 3.958 1.34 0.42 0.73 0.50 4.46 2.96 

Tm 69 33.25 5.163 2.201 4.042 1.34 0.42 0.73 0.50 4.54 — — 

Lu 71 34.90 5.263 2.086 4.103 1.34 0.42 0.73 0.50 4.60 — — 

a Experimentally determined by Smith et. al. (4)• 
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Figure 6. Variation of the shear modulus with atomic number for the hexagonal 
rare earth metals 
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V. DISCUSSION 

The calculated results given in Table 6 show that the 

approximation of considering the valence electrons as free 

and sharing the same ground state wave functions is capable 

of giving fairly good agreement with experiment for the 

atomic radii and compressibilities of the hexagonal rare 

earths and related metals. In addition the calculated 

variation of atomic radius and compressibility with atomic 

number, shown respectively in Figures 1 and 2, is in 

qualitative agreement with the observed behavior of the 

hexagonal rare earth metals. The assumption of divalent 

behavior for europium and ytterbium gives fairly good 

agreement with experiment for these metals. The poor 

agreement between the calculated and observed results for 

cerium is not surprising as the approximation of treating all 

the valence electrons on an equivalent basis at zero wave 

number is poorest for this element. The calculated cohesive 

energy is the small difference between two large energies; one 

calculated on an approximate basis and the other empirical. 

Hence the poor agreement between the calculated and observed 

cohesive energies is to be expected. For this reason the total 

energies of the metals investigated have been tabulated in 

Table 6 and the correspondence between theory and experiment 

is here seen to be quite good. 
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The assumptions made in this investigation with regard 

to the ion-core potential would seem to be valid as a first 

approximation. The poor agreement between the screening 

number of the free scandium ion and the calculated value for 

the solid may be due to either or both of the following: 

(a) the assumption that the ion-cores remain unperturbed in 

going from the free neutral atom to the solid may not be 

valid for light elements such as scandium, or (b) the 

approximation of the ion-core radius in the metal by the 

empirical ionic radius in a salt may be poor for metals of 

low atomic number. It is interesting to note that almost 

the same value of rQ for europium, atomic number 63, was 

calculated independently by means of (a) the ionic crystal 

radius and (b) the empirical second ionization potential. 

Probably the most questionable assumption of the 

modified cellular method of Raimes (9) is the neglect of 

the energy discontinuities at the zone boundaries and the 

treatment of the valence electrons as completely free. It 

might be noted that all the calculated quantities would be 

improved if the Fermi energy were slightly less than ohe free 

electron value. The results tabulated in Table 12 show that 

the use of an inverse effective mass ratio of 0.7 for yttrium 

was capable of greatly increasing the agreement between the 

calculated and observed quantities. 

In consideration of the number and type of 
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approximations used in the modified cellular method for the 

rare earths and related metals the agreement with experiment 

is quite satisfactory. A possible explanation is that an 

appreciable amount of s.-d hybridization is occurring in 

scandium, yttrium, and the rare earth metals due to the 

proximity of the first d level to the s, ground level in the 

solid state. The occurrence of such hybridization would 

cause the assumption of equivalent behavior of the valence 

electrons for zero wave number to be particularly good. The 

possibility of compensating errors cannot be disregarded in 

any calculation of the type made in this investigation. 

This would be expected to have quite serious effects upon the 

magnitudes of the calculated atomic radii and compressibilities 

but it should be emphasized that this would not appreciably 

alter the good agreement between the calculated and 

experimental dependence of atomic radius and compressibility 

on atomic number for the hexagonal rare earth metals. 

The qualitative result of the calculation of the elastic 

shear constants of yttrium is that B and P overlaps and holes 

are present at 0°K. As mentioned previously, the assumption 

was made that the valence electrons in yttrium share the 

same ground state wave functions and differ only in their 

wave-number vectors. This assumption implies that the first 

d level in yttrium lies quite close to the ground state at 

the center of the Brillouin zone. It is hence not unreasonable 
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to expect that near the zone boundaries the energies of some 

of the d levels may lie below the energy of the s. level and 

an appreciable overlap occurs between the s_ and d bands in 

yttrium. The result of overlapping bands should lead to holes 

in the s, band. 

Additional support for the result of B  and P overlaps and 

holes in yttrium comes from the theoretical calculation of 

the elastic shear constants of magnesium (8) by Reitz and 

Smith. In order to fit the measured values of C and C1 for 

magnesium B and P overlaps and holes had to be assumed with 

B overlap predominant. The predominance of B overlap for 

magnesium is due to the nearly ideal c/a ratio (c/a = 1.6237) 

of this metal. Reitz and Smith (8) postulate that in zinc and 

cadmium the c/a ratios (c/a/V*1.8) are so large that P overlap 

is prevented. Since the overlap-hole contribution to G1 is 

due primarily to P-type overlaps the absence of P overlap in 

zinc and cadmium is the suggested reason for the large value 

of G1 relative to C for these elements. On the basis of 

these arguments it would seem that as the c/a ratio becomes 

less than ideal P overlap increases and in the case of 

yttrium at 0°K (c/a = 1.567) is predominant. 

Probably the most questionable assumption made in the 

calculation of the overlap-hole contribution for yttrium is 

the assumption of inverted spherical energy surfaces for the 

holes. For a metal in which there are an appreciable number 
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of holes in the Brillouin zone the approximation of the energy 

surfaces of the holes by spheroids in calculating the change 

in the energy of the holes with respect to a strain parameter 

and the density of hole states is not strictly valid. In 

addition an approximate value was used for the total density 

of states at the Fermi level and necessary information from 

the soft X-ray spectrum of yttrium was not available. On the 

basis of the above discussion it is not possible at this time 

to attach great significance to the magnitudes of the 

calculated quantities given in Tables 10 and 11. It should 

be emphasized, however, that the qualitative result of 

electron overlap on the ^000,2j and ^lTO,1^ faces of the 

Brillouin zone and an appreciable number of holes in the zone 

is not expected to be in error if the nearly-free electron 

approximation is at all valid for yttrium. 

Recently the electrical resistivities of single crystals 

of yttrium as a function of temperature (38) were measured. 

The results show that the resistivity in the basal plane is 

approximately two and one-quarter times as great as the 

resistivity along the c axis. It is interesting to interpret 

these results on the basis of the model proposed in this 

investigation for the position of overlap electrons in 

yttrium. If appreciable electron overlap has occurred across 

the ^000,2| faces of the Brillouin zone and little or no 

electron overlap has occurred in the equatorial plane of the 

zone then the total number of charge carriers (electrons + 
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holes) along the c axis of the crystal is greater than in the 

basal plane. If no electron overlap has occurred in the basal 

plane then the conduction in the basal plane of the crystal is 

purely by holes. The electrical resistivity of single 

crystals of yttrium would hence be expected to exhibit quite 

anisotropic behavior and this is indeed observed. 

In conclusion it is suggested that experimental 

measurements of the lattice parameters and low temperature 

elastic constants of single crystals of yttrium as a function 

of electron to atom ratio would be of value in order to test 

the ideas proposed in this investigation. Variation of the 

electron to atom ratio could be achieved by a suitable choice 

of alloying materials. If no electron overlap is present in 

the equatorial plane of the Brillouin zone then the initiation 

of Q overlap should be reflected by a decrease in the c/a 

ratio with increasing electron to atom ratio. In addition the 

shear constant C should show an abrupt decrease at low 

temperatures upon the initiation of Q overlap with increasing 

electron to atom ratio of the type predicted by Reitz and 

Smith (8) for magnesium. Finally, it is hoped that 

experimental measurements of the soft X-ray spectrum and 

electronic specific heat of yttrium will provide the necessary 

information for a more accurate calculation of the contribution 

of the individual terms to the elastic shear constants and the 

number and density of overlap electrons and holes. 
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VIII. APPENDIX 

A. First and Second Derivatives of the Direct and Reciprocal 

Lattice Vectors with Respect to the Strain 

Parameters^* , ̂  , and £. 

The direct and reciprocal lattice vectors are defined 

respectively as 

O Vs A A 

R^ = niai + n2a2 n3a3 

and 

^ A A A 
h^ = + kgbg + k^b^ . 

The following quantities are defined for a hexagonal close-

packed crystal: 

2 2 
s = n - n1n2 + , 

m = (c/a)2 ry , 

2 2 
s' = k1 + k^kg + k^ , 

m1 = (a/c)2 k2 . 

For the shear corresponding to C the derivatives of the 

direct and reciprocal lattice vectors with respect to the 

strain parameter l are given by the relations : 
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(d/)/=1 = 3 8 \l + m)i ' 

2 
(Si!) = Jy (12m' - 8s') , 
dj J=1 9a2 

2 2 
(1^1) = -^-3 (40s1 + 12m') . 
dj£2 j=l 2?a2 

For the shear corresponding to C' the derivatives of the 

direct and reciprocal lattice vectors with respect to the 

strain parameter are given by the relations : 

(!h) = a 'nf - nin2 - W) 
à] «p1 2 (s + m)5 

o  2 , 2  .  2 . 2  
(L5l) = a 2 n3 , _ (nl ' n1n2 '.fg' 
dlf2 fl=l 4 (a + m)= 4(s + mV'2 

'4' = à ^ - H . 
d h +  ̂ 2'-F 

<d-^> • & • 
Y ̂ =1 

For the shear corresponding to C" the derivatives of the 

direct and reciprocal lattice vectors with respect to the 

strain parameter 6 are given by the relations' 
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(El) = 1(0/.) - njn-?' , 
a £ «=° 2 (s + m)' 

2 _ _ j. i_2. . .p.. \2 
,d2R1x _ (nx - nxnk + in2) ( c/a)2̂ ^-^^) 
{ * / - a. — t - tT7o— 
d é ^=0 (s + m)2 !).( s + 

(ïî) - 2aïa (a/.; , 
d €  6 = 0  a  

(A|) - ̂  <a/=>2 . 
dé2 < =0 a 

B. Full Zone Contributions to the Elastic 

Shear Constant C 

The full zone contributions to the elastic shear constant 

C were obtained by use of the data from. Table 7 and 

differentiation of equation 80. 

The contribution to C by 24 tetrahedra of type 1 is 

| (^fïïE) = 9 (a/c) [* 0.8230 + 0.7901 (a/c)2 
dj |=1 lO&a L 

- 27.6667 (a/cA + 23.1111 (a/c)6 

+ 10.8854 (a/c)8 J . 

The contribution to C by 48 tetrahedra of type 2 is 

2 I 2 1™" 
2 (1-5?) , = 9ĉ °h, (a/c) \ 1.5638 + 0.6420 (a/c)2 
2 dp |=1 IP&a5 L 
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-  2.9167 (a/cA -  18.0556 (a/c) 6  

-  6.5313 (a/c)^2 .  

The contribution to C by 4-8 tetrahedra of type 3 is 

-  ( î f ï5b = 9 o (  °h  (a/c)  i f  1.7284 + 1.6379 (a/c) 2  

2 dj 2 j=l 30&a^ 

+ 22.4691 (a/c)4 + 17.3333 (a/c)6 

+ i  ^ 2.0741 (a/c) 2  -  54.0494 U/c)** 

- 88.5926 (a/c)6 - 32 (a/c)8 ) 

+ 4;  ^37.3333 (a/c  )4 + 88.4444 (a/c) 6  

+ 6.9333 (a/c) 8  + 18 (a/c) 1 0 j  ,  

where x = ^1 + (a/c)2 ̂ . 

The contribution to C by 48 tetrahedra of type 4 is 

- (^%%) = 1 3 ( a / c )  \ [™ 1 .7284 + 2 .6996 (a/c)2 

2 d j 2 j" =1 30&a5 x2 

+ 68.1636 (a/c)4 + 134-3333 (a/c)6 

+ 81.2778 (a/c)8 + 14.5833 (a/c)10 

+ \  (^2.0741 (a/c) 2  -  89.0864 (a/c) 4  

-  116.8519 (a/c)6 _ 271.2500 (a/c)8 
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- 109.6667 (a/c)10 - 14.7300 (a/c)12̂  

+ ̂  ̂ 37.3333 (a/c)4 + 145.7778 (a/c)6 

+ 210.3333 (a/c)8 + 139.5000 (a/c)10 

+ 42 (a/c)12 + 4-5 (a/c)14 ) 

where x = Ç 1 + (a/c)2 ̂  . 

The contribution to C by 24 tetrahedra of type 5 is 

9 ^ d Wp^ 9 c* „h2 

d/2 i_1 20V3'ma5 L: (a/c) 1.7284 + 0.0741 (a/c) 

The contribution to G by 24 tetrahedra of type 6 is 

2 d 3 ^ 
y= (1.7284 

+ 0.8971 (a/c)2 + 3.3889 (a/c 

+ y a ^ -1.556 (a/c)2 + 33.8704 (a/c)4 

+ 69.0278 (a/c)6 + 21.7500 (a/c)8 J 

- y""3/2 ^ ̂  (a/c)4 + 60.1667 (a/c)6 

+ 90.5000 (a/c)8 + 54.3750 (a/c)10 

+ 10.1250 (a/c)12 J + ^1.7778 (a/c)' 

- 29.6049 (a/c)4 - 15.3333 (a/c)6j 
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- 7— y 42.6667 (a/c)4 + 92.2963 (a/c)6 

+ 49.8611 (a/c)8 + 18.0000 (a/c)10J 

+ ^ 42.6667 (a/c)4 + 48.4444 (a/c) 

A 
+ 12.0000 (a/c) 

where 

x = ^ 1 + (a/c)2 ̂  , 

7 =  ̂ 1  +  3 ( a / c ) 2  +  9 / 4 ( a / c ) 4 ^  .  

The contribution to C by 24 tetrahedra of type 7 is 

2 (éEïE) = (a/c) ̂  ^ ( 1. 7284 
2 d| 2 I =1 30li?ma^ x' 

+ 1.9588 (a/c)2 + 29.8148 (a/c)4 

+ 28.8889 (a/c)6 + 11.6111 (a/c)8 J 

+ y^ ̂ -1.5556 (a/c)2 + 12.9629 (a/c)^ 

+ 200.5556 (a/c)6 + 193.8333 (a/c)8 

+ 101.1250 (a/c)10 + 19.8750 (a/c)12] 

- y " 2̂ 14 (a/c)4 + 81.6667 (a/c)6 

+ 185 (a/c)8 + 204 (a/c)10 + 113.6250 (a/c)12 

+ 28.8750 (a/c)11* + 5.0625 (a/c)16 j 
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7778 (a/c)2  - 64.6420 (a/c)4  

where 

x = 

y = 

+ 22 ( l. 
X \ 

- 117.5556 (a/c)6 - 58.3333 (a/c)8 

-15.6667 (a/c)10 + 6 (a/c)12 

- 2-1 ^ 42.6667 (a/c)4 + 165.7778 (a/c)6 

+ 250.6667 (a/c)8 + 168 (a/c)10 + 51 (a/c)12 

+ 9 (a/c)3"4 j ^ ̂42.6667 (a/c)4 

+ 105.7778 (a/c)6 + 92 (a/c)8 + 30 (a/c)10 

(l  + (a/c)2  ) ,  

^1 + 3(a/c)2 + 9/4(a/c)4 ] • 

C. Full Zone Contributions to the Elastic 

Shear Constant C' 

The contributions to the elastic shear constant C1 from 

a completely filled Brillouin zone were evaluated from the 

relations in Table 8 and differentiation of equation 80 with 

respect to the strain parameter 4^ • 

The contribution to C' from 8 tetrahedra of type 1 
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(SÎÏÏE) o<„h' _ «<o 

[• .pr* • s-»™ <•/•>'* - '•«-

+ x ^ 0.3333 Y3 + {O.3333 + 0.5000 (a/c)2jy2 

+ 0.4444 + 0.6667 (a/c)2 + 2.5000 (a/c)4 J 

+ x2 ̂  - 2 (a/c)2 - 1.5000 (a/c)4 ) + x3 

(- 1.3333 - 0.6667 (a/c)2 ) - 0.5000 (a/c)2 y3 

+ y2 -̂0.5000 (a/c)2 - 0.3750 (a/c)4j 

where 

x = (l - 3/4(a/c)2 ̂  , 

y = ^2/3 - a(a/c)2 j . 

The contribution to 01 from 8 tetrahedra of type 2 is : 

(d2#Fj ckQhc (a/c ) 1.4444 - 3.0000 (a/c)' 
2 q-1 20Bina-

- 6.3645 (a/c)4 - 0.8322 (a/c)6 - 0.2442 

The contribution to G1 from 8 tetrahedra of type 3 is : 

I 2 

(â2§) = f (a/c) ̂ 1.1111 + 2.0000 (a/c)4 

!>'] 

d ̂  2 4^=1 20f?ma^ 

- 1.6944 (a/c)6 + 0.6354 (a/c)^J . 

The contribution to G1 from 16 tetrahedra of type 4 is' 
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(^%) M-l = r [ " 2.1234 - 2.2222 (a/c)2 
d^ 2  41" 1  lOl^ma^ L 

+ 2.2500 (a/c)4 + 1.5833 (a/c)6 

- 0.2813 (a/c)8̂  . 

The contribution to C! from 16 tetrahedra of type 5 is : 

(^~)4f_1 = ^2^— (a/c) F x2y( 2.6667 + 0.3333 (a/c)2) 
d4?2 7 20^ma5 U 

+ xy 2(a/c)2 + 2.7708 (a/c)4 + 0.7500 (a/c)6] 

+ x2 /- 4-4167 (a/c)2 - 0.7500 (a/c)4 

+ 3.7500 (a/c)6] + y( 0.1250 (a/c)4 

+ 0.1875 (a/c)6̂  + x ̂ 8(a/c)2 + 0.3750 (a/c)6] 

+ 0.2161 xy3 - 0.0092 (a/c)2y3 

+ 2.6249 (a/c)2xy2 + 0.6667 (a/c)4y2J , 

where 

x = ( 1 + 3/4(a/c)2 ) , 

y = (l - 3/4(a/c)2 ) . 

The contribution to 01 rrom 16 tetrahedra of type 6 is : 

P* -1 = °^°h2 g (a/=) Lx2y (2.6667 + 0.3333 (a/c)2) 
a»|2 ™ 20fôma5 
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- xy ̂  2.6667 (a/c)2 +• 0.5000 (a/c)4 ) 

+ x2 ( 1.3333 (a/c)2 + 0.2500 (a/c)4) 

+ y (0.5000 (a/c)4 + 0,9375 (a/c)6) 

- x ( 0.9167 (a/c)4 + 0.5625 (a/c)6) + 0.3457 xy3 

+ 0.0741 (a/c)2y3 - 0.1667 (a/c)2xy2 

- 0.0833 (a/c)4y2J , 

where 

x = (1  + 3/4(a/c) 2  )  ,  

y = (  1  -  3/4(a/c) 2  )  .  

The contribution to 0' from 16 tetrahedra of type 7 is : 

=  "'"rf  S (a/c)  [ |  [(2.3704 y 2  -  1.7778 (a/c) 2y 
d4)2 7 20|f3W L L 

+ 0.6667 (a/c)2)J + 0.3704 (a/c )2y2 

- 0.8889 (a/c)4y + 1.7778 y2 + 1.7778 (a/c)2y 

+ 0.1728 (a/c)^) + -L ^ ^ - 1.2840 (a/c)2 

+ 0.2963 (a/c)4̂  y2 - ^ 0.2880 (a/c)^ 

+ 0.1481 J y + 0.0370 (a/c)A + \ 0.5926 
-  0.4444 (a/c) 4J y 2  + 0.0370 (a/c) 6yjj  ,  
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where 

x = ( 1 + (a/c)2 ) , 

7 - ^ 1 +  3 / 4 ( a / c ) 2  J .  

The contribution to C1 from 16 tetrahedra of type 8 is: 

_ °̂  ô 2 

r r 

- 5.3333 (a/c)27 + 0.3333 (a/c)4 J 
+ ^ { - 0.4938 - 2.9630 (a/c)2j y2 

+ | 0.1975 (a/c)2 + 0.9630 (a/c)4j 7 

- 0.1019 (a/c)4j + i ̂ {- 0.1975 (a/c)' 

+ 0.5926 (a/c)4? 72 + 0.1481 (a/c)47 

+ 0.0185 (a/c)6 J + L ̂ 0.2963 (a/c)4y2 
+ 0.0370 (a/c)67 

where 

x = 

y = 

(l + (a/c)2) , 

( 1 + 3/4(a/c)2 ] 

The contribution to C' from 16 tetrahedra of type 9 is: 

^ ( 5.333 72 + 2.6667 (a/c)27 (SfïE) 2̂- (a/c) 
d^ 2 ̂  =1 60 f?ma5 
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+ 0.5000 (a/c) 4 j  + ^\y2 + (  2.1728 (a/c) 

-  2.6667 (a/c) 4J y + 0.1852 (a/c) 4  J 

-  i( + 1.1852 (a/c)2y2 + 1.5309 (a/c)4y ) 

+ ~ ( 1.7778 (a/c)4y2 + O.llj.81 (a/c)6 J I, 

where 

x 

y 

( 1 + (a/c)2) , 

( 1 + 3/U(a/c)2J . 

The contribution to C' from 16 tetrahedra of type 10 is : 

(SM). = SUïL, (a/c) i I - 2.9630 + 1.7778 (a/c)2yt 
d<jf 2 ̂ 1 20%a^ 

+ 1.7778 (a/c)2y2 + 1.3333 (a/c)4t + 5.3333 (a/c 

+ 0.2963 (a/c)2y2t - 0.0658 (a/c)4t2 j  

+ ̂  ̂ y2t j1.1852 - 2.5185 (a/c)2 j 

+ yt Ï3.5556 (a/c)2 - 1.1358 (a/c)4| 

+ y2|| - 0.0878 + 2.1111 (a/c)2 - 1.3333 (a/c)4̂  

+ y jo.8889 (a/c)4 + 0.2963 (a/c)6J 

+ 0.1536 (a/c)2yt2 + t j 0.0988 (a/c)4 
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+ 0.2963 (a/c) 6^^ + —^ ^y t^ 1.1852 (a/c) '  

+ 0 .2963 (a/c) 4^ + yt j -  0.8889 (a/c) 4  

- 0.3951 (a/c)6 j + 0.8889 (a/c) 4y 2  

+ yt2̂  - 0.2634 + 0.1317 (a/c)4 

- 0.0988 (a/c) 6 t j j  + ̂  ̂ - 0.5185 (a/c)4y2t 

+ 0.0988 (a/c)6yt2 

where 

x = ^ 1 + (a/c)2), 

y = (l + 3/4(a/c)2 ) , 

t = ^1 + 3/2(a/c)2̂  . 

The contribution to C* from 16 tetrahedra of type 11 is : 

(dfWp) _ 7<oh' (a/c) ^ ̂  2.6667 y 2z -  2(a/c) 2yz 
d ̂  2 l 

+ 1.1852 + 8.8889 (a/c) 2J y 2  + 1.3333 (a/c) 2  

- 0.6667 (a/c) 4 j  y  + 0.7500 (a/c) 4zj  

+ -i ̂ y 2z j1.0370 - 3.5556 (a/c) 2  + O .8889 (a/c) 4J 

+ yz 1^0.9259 (a/c)2 - (a/c)6j+ y2( 1.1852) 

+ 0.1250 (a/c) 4z + 0.6667 (a/c) 4y + 0.2707 (a/c) 6z 3  
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where 

+ yz2 |0.2222 (a/c)2 + 0.666? (a/c)4 

+ 0.3333 (a/c)6j + z2 T0.0833 (a/c)4 

+ 0.1250 (a/c)6 + -1 ^ y2z _ 1.1852 (a/c)' 

+ 0.5556 (a/c)4yz + y2 £ 0.3951 (a/c)2 

- 0.5926 (a/c)4i - 0.1111 (a/c)4z3y 

+ 0.0417 (a/c)6z3 + yz2 £o.llll (a/c)4 

- 0.6667 (a/c)6̂  + ^ - 0.4444 (a/c)4y2z 

+ yz3£ - 0.3333 (a/c)2 + O.4167 (a/c)6 

1 + (a/c) ] , 

1 + 3/4(a/c)2 ] , 

4/3 + 2(a/c)2 j. 

The contribution to C' from 16 tetrahedra of type 12 is : 

(^%) = ï (a/c) F " ( 3'3333 (a/c)4 + x2t 
d^2^ 201/3ma L 7 ( 

^1.1852 + 0.8889 (a/c)2j - 4•4444 (a/c)2xt 

- 3.1111 (a/c)2x2 + 0.3333 (a/c)4t 

+ x ̂ 3.5556 (a/c)2 + 2.6667 (a/c)4J ^ 
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where 

x 

7 

t 

+ JL ̂  -  4.11+81 (a/c)4x2 + xt I 0.1481 (a/c)2 

-  1.7778 (a/c)4 j  - 3.4074 (a/c) 4x + 0.0556 (a/c) 

-  0.1481 (a/c)2xt3 - 0.4352 (a/c)4t3 

- 0.4444 (a/c)4xt2 + 0.6667 (a/c)2 + 4(a/c)6xt 

0.7901 (a/c)2 + 2.3704 (a/c)4J 

-  0.5926 (a/c)4xt - 1.7778 (a/c)4x2 

+ 0.5926 (a/c)4xt3 - 0.1481 (a/c)6t3 

1.1852 (a/c)4x2t 

+ i I x2t 

- 3.5556 (a/c)6xt2 

+ 0.5926 (a/c)6xt3 

( 1 + 3 A (a/c)2) , 

(l + (a/c)2 ) , 

( 1 + 3/2(a/c)2) . 

The contribution to C' from 12 tetrahedra of type 13 is-: 

/d2Wp. 
* O 1 

= - 3otgh2t. (a/c) 
d*j2 ^=1 40ll?ma^ 

0.4444 - 0.1111 (a/c)' 

The contribution to C1 from 12 tetrahedra of type 14 is : 
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^fS(a/o)|j(7H' 2,6667 
2.6667 (a/c) 2 j  + y"* £ 0 .7901 -  1.1852 (a/c)  

1 .7778 (a/c) 4  + 2.6667 (a/c) 6 j  

y" 1  0.2364 + 1.1852 (a/c) 4  

1.3333 (a/c) 8  j  -  1.1852 -  2.6667 (a/c) 2  

4.0000 (a/c) 4^ +  4 I 0 , 8 8 8 9  

0.5925 (a/c) 2  -  5.0000 (a/c) 4  + 2.3333 (a/c)  

(a/c) 81 + y fl.3333 - 5.2222 (a/c) 2  

3.1666 (a/c) 4  + 1.6667 (a/c) 6  j  

2 3/2 2 
0.3333 (a/c) yJ/ + y + 0.2963 

0.1152 (a/c) 2  -  1.3333 (a/c) 4  -  5.666? (a/c)  

1.5000 (a/c) 8  + 0.166? (a/c) 1 0  ̂  

~  (  y 2  j  0.5000 (a/c) 2  + 0.2222 (a/c) 4  

X-" \ I 

0.5000 (a/c) 8 j  + y 3 / / 2  £ (a/c) 2  

0.5000 (a/c) 4  -  1.5000 (a/c) 6J 

y j2.0000 (a/c) 2  + 2.666? (a/c) 4  
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-  4.5000 (a/c) 6 j  ̂  ^  ̂ 7 2  [ l .  

1 )' ' 
5000 (a/c)  

+ 0 .5000 (a/c)  

where 

x  =  ^  1  +  ( a / c ) 2 ) ,  

y  = ^ 4/9 + 4/3(a/c) 2  + (a/c) 4  )  .  

The contribution to C' from 12 tetrahedra of type 15 is : 

(d2̂ ) = ph2 

dfj/j 2 ~1 4of?ma^ 
(a/c)  |  ^ 8y 3  + y" 3  3.  5556 

,3333 

-  2.6667 (a/c) 2  + 9.3333 (a/c) 4J 

+ y" 3 / / 2  |  - 0.2634 + 1.1852 (a/c) 4  

-  1.3333 (a/c  ) 8  j  ̂  ^ y 3  •£ -  1».  

-  10.4444 (a/c) 2  + 4-5000 (a/c  ) 4J 

+ y"̂  j 0.2963 + 1.0864 (a/c)2 - 1.0741 (a/c)4 

-  2.4259 (a/c) 6  + 1.500 ( a / c ) 8 j  

+ y™ 3 / 2  £ -  0.0037 (a/c) 2  + 0.0082 (a/c) 4  

+ 0.0082 (a/c) 6  -  0.0185 (a/c) 1 0 |  ̂  

s  ̂ 2.6667 (a/c) 2  + 2.2222 (a/c) 4  + %3 ( ? 
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- 6(a/c)6 j - 2(a/c)V/2 + y-l jo.0329 (a/c) 

- 0.0740 (a/c)8 ^ ̂ 3(a/c)4y 

4 

^3/2 

+ I (a/c)6y3 

where 

x = (l+ (a/c)2 ), 

y =^4/9 + 4/3(a/c)4 ) . 

The contribution to C' from. 12 tetrahedra of type 16 is : 

7.2593 - 0.1111 (a/c)' 

The contribution to C' from 12 tetrahedra of type 17 is : 

% + y-a [ 0.0741 
2-6"" 

+ 1.5556 (a/c)4 j  + y"3//2 £ -  0.0329 

+ 0.1667 (a/c) ^ ̂  ^ y3 ̂ - 0.2963 

- 3.5370 (a/c)2 + 3.1111 (a/c) 4 j  

i ̂0.0494 - 0.1811 (a/c)2 - 0.2222 (a/c)4 + y 

+ 0.0324 (a/c)6 + 0.25 (a/c)8 j - 0.4444 y3//2 

P (y* i- °-2 2963 + 0.9383 (a/c)' 
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where 

x 

y 

+ 1.0370 (a/c)4 - 2(a/c)6 j + y3//2 £ 0.2963 

- 2.6667 (a/c)2 | j { " 0*2963 (a/c)2 

+ 1.7778 (a/c)4 jj j , 

( 1 + (a/c)2 ), 

( 0.3333 + (a/c)2 + 0.75 (a/c)4 ). 

The contribution to C' from 12 tetrahedra of type 18 is : 

. d W-p _ otoh2 (^f),~ ̂  (a/c) 
d * 7*1 SOrrray 

£ I 5.3333 y«t + 1.7778 (a/c)4y *t 

+ 7.1111 (a/c)2ys + y"3y/2t 0.0658 - 0.2963 (a/c)4 

+ 0.6667 (a/c)8 j  + 7~*\ - 0.5926 (a/c)2 

+ 2.6667 (a/c)6̂  ̂ + ~2 ^ y3* ̂ 1.1852 

- 4.148I (a/c)2 - 1.1852 (a/c)4 + 1.7778 (a/c)6f 

+ y"»t ̂ 0.0988 + 0.3951 (a/c)2 - 0.8889 (a/c)4 

- 1.3333 (a/c)6 + 0.5 (a/c)8? + y* j - 1.7778(a/c)2 

- 3.5555 (a/c)4 + 4(a/c)6 I + 2.6667 y3̂ 2t 

+ 0.4938 (a/c)2y2t3 + y~2t3 + y"2t3 £0.1394 (a/c)2 
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- 0.014.91+ (a/c)6| - 0.5926 (a/c)4y^t2 

+ y~^t2̂ - 0.1975 (a/c)4 + 0.4444 (a/c)8J 

+ y-3/2t3^_ 0.0037 (a/c) + 0.0165 (a/c)6 

- 0.0185 (a/c)10 | ^ i ̂ [1.1852 (a/c) 

+ 2.3704 (a/c)4 - 2.6667 (a/c)6J 

- 1.1852 (a/c)2y3̂ 2t - 0.3786 (a/c)4y2t3 

- 1.1852 (a/c)6y&t2  + y"^t3|o.0439 (a/c)4  

- 0.0988 (a/c)8A+ i ̂ 1.7778 (a/c)4y3/2t 

+ 0.1975 (&/c)6y*t3 

where 

x = (^ 1 + (a/c)2 ) , 

y = ^ 1/3 + (a/c)2 + 3/4(a/c)4) , 

t = ( 1 + 3/2(a/c)2 ) . 

D. Relations for the Determination of the Change in 

Electrostatic, Non-Coulomb Repulsive, and Full 

Zone Energies with Strain 

The change in the electrostatic energy with respect t 

the strain parameter^ is given by the relation: 
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(ajJ fi = f 'if- =1 

l 

exp (lr^J+jZl ' <_2E2)(Wt)(Sj'|=i 

1 

,.a;, - „} . 

The change in the non-Coulomb core repulsive energy with 

respect to the strain parameter is given by the relation: 

•iff..-» 2<sh„<?!>/., • 

Rl 

The change in the full zone energy with respect to the 

strain parameter^* may be evaluated by differentiation of 

equation 80 using the relations for p, q, and r given in 

Table 7• 

For 24 tetrahedra of type 1: 

-l = 4=T~^ (a/c) [" - 0.4938 + 2.3704 (a/c)2 

dj j"1 5f?ma5 L 

- 11.6667 (a/c)4 + 5.3333 (a/c) + 1.7188 (~)8 

For 48 tetrahedra of type 2: 
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^E-)r- i  = (a/c)  Î" -  0.9383 + 1 .9259 (a/c) 2  

j" /  - 1  5&a 5  L 

-  1.2500 (a/c)4 -  4.1667 (a/c) 6  

- 1.0313 (a/c)8] . 

For 48 tetrahedra of type 3: 

(  — )  c = i  =  ,  (a/c)  4  f  -  1.0370 + 4.9136 (a/c) 2  

df j  l5V?ma5 x^ L 

+ 9 .6296 (a/c) 4  + 4*0000 (a/c) 6  

-  -  ̂ 6 .2222 (a/c) 2  + 14.7407 (a/c) 4  

+ 11.5556 (a/c) 6  + 3.0000 (a/c) 8 j  ,  

where x = ( 1 + (a/c)2 ̂  . 

For 48 tetrahedra of type 4 :  

(^T") f _i = (a/c) 4 f ~ 1-0370 + 8.0967 (a/c)2 

df j -1 15 ̂ ma^ x2 

+ 29.2130 (a/c) 4  + 31.0000 (a/c) 6  

+ 12.8333 (a/c) 8  + 1.7500 (a/c) 1 0  

-  i  (6.2222 (a/c) 2  + 24.2963 (a/c) 4  

+ 35.0556 (a/c)6  + 23.2500 (a/c)8  

+ 7.0000 (a/c) 1 0  + 0.7500 (a/c) 1 2 j j  ,  
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where x = 1 + (a/c)2 

For 24 tetrahedra of type 5: 

dWp. 

«TS -l 
ol pk2 

10 ma-
(a/c) 1.0370 - 2.2222 (a/c)' 

For 24 tetrahedra of type 6: 

I 
(dWg, = (a/c) i y*(- 1.0370, 
di A 20V?ma5 x L 

+ 2.6914 (a/c)2 + 1.6667 (a/c)4 ) 

+ y-̂  (4.6667 (a/c)2 + 13.0556 (a/c)4 

+ 10.5833 (a/c)6 + 2.2500 (a/c)8 ) 

- (7.IIII (a/c)2 + 8.0741 (a/c)4 
x \ 

+ 2.0000 (a/c)6 ] 

where 

x = (l + (a/c)2 ) , 

y = ^ 1 + 3(a/c)2 + 9/4(a/c)4 ) 

For 24 tetrahedra of type 7: 

/ dWp. 

'-T'i-1 

= ^^2 (a/c) 
15/Ima5 x2 

r* 1. 0370 
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where 

x = 

+ 5-8765 (a/c)2 + 12.7778 (a/c)4 + 6.6667 (a/c)6 

+ 1.8333 (a/c)8 ) + 7"^ (4.6667 (a/c)2 

+ 20.2222 (a/c)4 + 31.3333 (a/c)6 +21.0000 (a/c)8 

+ 6.3750 (a/c)10 + 1.1250 (a/c)12J 

-II ( 7.1111 (a/c)2 + 17.6296 (a/c)4 

X V \ 

+ 15.3333 (a/c)6 + 5.0000 (a/c)8 + (a/c)10 ) 

(l + (a/c)2) , 

7 = ( 1 + 3(a/c)2 + 9/4(a/c)4 ) . 
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